Preparation of Macroporous PEK-C Powders with Chemically Linked Ionic Liquids as Catalyst and Kinetics Study of Biomass
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of ILs Modified PEK-C Powder (PEK-C-ILs) Catalyst
2.3. Hydrolysis of Inulin and Total Reducing Sugar (TRS) Assay
2.4. Evaluation of the Catalyst Performance
2.5. Hydrolysis Kinetics Analysis
2.6. Recycling Utilization and Stability of PEK-C-ILs Powder Catalyst
3. Results and Discussion
3.1. Determination of Degree of Chloromethylation (DCM)
3.2. The Catalytic Activity of PEK-C-ILs Powders (5)
3.2.1. Comparison of Catalytic Activity of PEK-C-ILs Powders with Sulfuric Acid
3.2.2. Hydrolysis Mechanism of PEK-C-ILs Catalyst
3.3. Effect of Catalytic Conditions
3.3.1. Effect of Different DCM
3.3.2. Effect of Catalyst Dosage
3.3.3. Effect of Temperature
3.3.4. Effect of Pore Size
3.3.5. Effect of Inulin Concentration
3.4. Hydrolysis Kinetics
3.4.1. Kinetic Parameters Estimation
3.4.2. Comparison of ILs, Dilute Sulfuric Acid and PEK-C-ILs Catalyst
3.4.3. Model Validation
3.5. Stability and Reusability of Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Baldwin, R.M.; Magrini-Bair, K.A.; Nimlos, M.R.; Pepiot, P.; Donohoe, B.S.; Hensley, J.E.; Phillips, S.D. Current research on thermochemical conversion of biomass at the National Renewable Energy Laboratory. Appl. Catal. B 2012, 115–116, 320–329. [Google Scholar] [CrossRef]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Iranmahboob, J.; Nadim, F.; Monemi, S. Optimizing acid-hydrolysis: A critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 2002, 22, 401–404. [Google Scholar] [CrossRef]
- Akpinar, O.; Erdogan, K.; Bostanci, S. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res. 2009, 344, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Yeh, A.I.; Huang, Y.C.; Chen, S.H. Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr. Polym. 2010, 79, 192–199. [Google Scholar] [CrossRef]
- Hu, X.M.; Xiao, Y.B.; Niu, K.; Zhao, Y.; Zhang, B.X.; Hu, B.Z. Functional ionic liquids for hydrolysis of lignocellulose. Carbohydr. Polym. 2013, 97, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jones, C.L.; Baker, G.A.; Xia, S.Q.; Olubajo, O.; Person, V.N. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 2009, 139, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.C.; Jensen, J.L.; Ntai, L.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J.H. Novel Brönsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc. 2002, 124, 5962–5963. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.Z.; Xie, W.X.; Sun, W.Z.; Zhao, L. Modeling of the interfacial behaviors for the isobutane alkylation with C4 olefin using ionic liquid as catalyst. Chem. Eng. Sci. 2017, 166, 42–52. [Google Scholar] [CrossRef]
- Yu, G.R.; Zhao, J.J.; Song, D.D.; Asumana, C.; Zhang, X.Y.; Chen, X.C. Deep oxidative desulfurization of diesel fuels by acidic ionic liquids. Ind. Eng. Chem. Res. 2011, 50, 11690–11697. [Google Scholar] [CrossRef]
- Tao, F.; Song, H.L.; Chou, L.J. Hydrolysis of cellulose in SO3H-functionalized ionic liquid. Bioresour. Technol. 2011, 102, 9000–9006. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.P.; Wang, X.L.; Zhou, G.Y.; Cao, Y.; Lu, P.; Liu, W.F. Hydrolysis kinetics of inulin by imidazole-based acidic ionic liquid in aqueous media and bioethanol fermentation. Chem. Eng. Sci. 2016, 151, 16–24. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Owereh, O.S. Owereh, Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal. Commun. 2010, 11, 1072–1075. [Google Scholar] [CrossRef]
- Yang, J.S.; Wang, J.; Liu, C.; Cao, L.P.; Xu, Y.X.; Che, Q.T.; He, R.H. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes. J. Membr. Sci. 2015, 493, 80–87. [Google Scholar] [CrossRef]
- Chinnappan, A.; Bandal, H.; Kim, H.; Ramakrishna, S. Mn nanoparticles decorated on the ionic liquid functionalized multiwalled carbon nanotubes as a supercapacitor electrode material. Chem. Eng. J. 2017, 316, 928–935. [Google Scholar] [CrossRef]
- Xu, Z.J.; Wan, H.; Miao, J.M.; Han, M.J.; Yang, C.; Guan, G.F. Reusable and efficient polystyrene-supported acidic ionic liquid catalyst for esterifications. J. Mol. Catal. A 2010, 332, 152–157. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, W.G.; Fan, W.; Wang, Y.H.; Meng, Z.Y.; Zhang, S.J. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal. Today 2009, 148, 361–367. [Google Scholar] [CrossRef]
- Wang, Z.G.; Chen, T.L.; Xu, J.P. Gas transport properties of novel cardo poly(aryl ether ketone) with pendant alkyl group. Macromolecules 2000, 33, 5672–5679. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, C.X.; Zhang, X.D.; Chen, L.W.; Jiang, L.; Meng, Y.D.; Wang, X.K. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders. J. Power Sources 2014, 272, 211–217. [Google Scholar] [CrossRef]
- Warshawsky, A.; Deshe, A. Process for the Production of Halomethylating Agents which Are of Low Volatility. U.S. Patent US4568700A, 4 February 1986. [Google Scholar]
- Barclay, T.; Ginic-Markovic, M.; Johnston, M.R.; Cooper, P.D.; Petrovsky, N. Analysis of the hydrolysis of inulin using real time 1H NMR spectroscopy. Carbohydr. Res. 2012, 352, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.; Ruiz, E.; Castro, E.; Moya, M. Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Des. 2010, 88, 633–640. [Google Scholar] [CrossRef]
- Mamman, A.S.; Lee, J.M.; Kim, Y.C.; Hwang, I.T.; Park, N.J.; Hwang, Y.K.; Chang, J.S.; Hwang, J.S. Furfural: Hemicellulose/xylose derived biochemical. Biofuels Bioprod. Biorefin. 2008, 2, 438–454. [Google Scholar] [CrossRef]
- Lu, P.; Zhao, Z.P.; Wang, X.Y.; Lan, G.J.; Wang, X.L. Understanding effect of molecular structure of imidazole-based ionic liquids on catalytic performance for biomass inulin hydrolysis. Mol. Catal. 2017, 435, 24–32. [Google Scholar] [CrossRef]
- Li, J.J.; Li, J.H.; Zhang, D.J.; Liu, C.B. Theoretical explanation for how SO3H-functionalized ionic liquids promote the conversion of cellulose to glucose. Chemphyschem 2015, 16, 3044–3048. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.M.; Zhao, H.H.; Song, H.L.; Miao, Z.C.; Yang, J.; Zhao, J.; Liang, N.; Chou, L.J. Functionalized ionic liquids supported on silica as mild and effective heterogeneous catalysts for dehydration of biomass to furan derivatives. J. Mol. Catal. A 2015, 410, 235–241. [Google Scholar] [CrossRef]
- Sun, W.N.; Chen, T.; Chen, C.X.; Li, J.D. A study on membrane morphology by digital image processing. J. Membr. Sci. 2007, 305, 93–102. [Google Scholar] [CrossRef]
- Escuin, P.C.; García-Bennett, A.; Ros-Lis, J.V.; Foix, A.A.; Andrés, A. Application of mesoporous silica materials for the immobilization of polyphenol oxidase. Food Chem. 2017, 217, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Ricca, E.; Calabro, V.; Curcio, S. The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit. Rev. Biotechnol. 2007, 27, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Yat, S.C.; Berger, A.; Shonnard, D.R. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresour. Technol. 2008, 99, 3855–3863. [Google Scholar] [CrossRef] [PubMed]
Entry | Reaction Time/h | Temperature/°C | DCM |
---|---|---|---|
Simple in C2H2Cl2 a | |||
1 | 6 | 40 | 0.46 |
2 | 8 | 40 | 0.61 |
3 | 10 | 40 | 0.95 |
4 | 12 | 40 | 1.10 |
5 | 14 | 40 | 1.28 |
6 | 16 | 40 | 1.42 |
7 | 20 | 40 | 1.46 |
8 | 24 | 40 | 1.45 |
Simple in H2SO4 b | |||
1 | 2 | 10 | 1.67 |
2 | 4 | 10 | 1.82 |
3 | 6 | 10 | 2.33 |
4 | 10 | 10 | 2.81 |
5 | 15 | 10 | 3.15 |
6 | 6 | 30 | 3.33 |
7 | 15 | 30 | 3.48 |
8 | 20 | 30 | 3.51 |
9 | 2 | 40 | Gel |
10 | 0.5 | 50 | Gel |
PEK-C-ILs | A | b | c |
---|---|---|---|
Mean pore size/nm a | 185 | 112 | 71 |
PEK-C-Ils Concentration (w/w %) | k (min−1) | Ea (kJ/mol) | lnA | R2 | ||||
---|---|---|---|---|---|---|---|---|
50 °C | 55 °C | 60 °C | 65 °C | 70 °C | ||||
1 | 0.00325 | 0.00541 | 0.00881 | 0.01410 | 0.02242 | 89.01 | 27.39 | 0.9967 |
2 | 0.00678 | 0.01118 | 0.01809 | 0.02888 | 0.04551 | 87.59 | 27.58 | 0.9961 |
3 | 0.02228 | 0.03610 | 0.05752 | 0.09035 | 0.14018 | 84.73 | 27.66 | 0.9923 |
4 | 0.04286 | 0.06869 | 0.10863 | 0.16941 | 0.26065 | 83.21 | 27.80 | 0.9957 |
5 | 0.05341 | 0.08551 | 0.13481 | 0.20972 | 0.32201 | 82.80 | 27.89 | 0.9925 |
Catalyst | k (min−1) | Ea (kJ/mol) | lnA | R2 | |
---|---|---|---|---|---|
55 °C | 65 °C | ||||
PEK-C-ILs | 0.0687 | 0.1694 | 83.21 | 27.80 | 0.9957 |
VImaILs [13] | 0.0327 | 0.0781 | 83.68 | 27.25 | 0.9989 |
Dilute sulfuric acid | 0.0173 | 0.0621 | 95.12 | 30.90 | 0.9802 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, P.; Cao, Y.; Wang, X. Preparation of Macroporous PEK-C Powders with Chemically Linked Ionic Liquids as Catalyst and Kinetics Study of Biomass. Appl. Sci. 2018, 8, 770. https://doi.org/10.3390/app8050770
Lu P, Cao Y, Wang X. Preparation of Macroporous PEK-C Powders with Chemically Linked Ionic Liquids as Catalyst and Kinetics Study of Biomass. Applied Sciences. 2018; 8(5):770. https://doi.org/10.3390/app8050770
Chicago/Turabian StyleLu, Peng, Yong Cao, and Xiaolan Wang. 2018. "Preparation of Macroporous PEK-C Powders with Chemically Linked Ionic Liquids as Catalyst and Kinetics Study of Biomass" Applied Sciences 8, no. 5: 770. https://doi.org/10.3390/app8050770
APA StyleLu, P., Cao, Y., & Wang, X. (2018). Preparation of Macroporous PEK-C Powders with Chemically Linked Ionic Liquids as Catalyst and Kinetics Study of Biomass. Applied Sciences, 8(5), 770. https://doi.org/10.3390/app8050770