Programmable Zoom Lens System with Two Spatial Light Modulators: Limits Imposed by the Spatial Resolution
Abstract
:Featured Application
Abstract
1. Introduction
2. Geometry of the System
3. Experimental Imaging Results without Moving Elements
3.1. Negative Magnifications
3.2. Positive Magnifications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Youngworth, R.N.; Betensky, E.I. Fundamental considerations for zoom lens design. Proc. SPIE 2012, 8488, 848806. [Google Scholar]
- Tam, E.C. Smart electro-optical zoom lens. Opt. Lett. 1992, 17, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, S.; Hendriks, B.H.W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 2004, 85, 1128–1130. [Google Scholar] [CrossRef]
- Ren, H.; Fox, D.W.; Wu, B.; Wu, S.T. Liquid crystal lens with large focal length tunability and low operating voltage. Opt. Express 2007, 15, 11328–11335. [Google Scholar] [CrossRef] [PubMed]
- Jamali, A.; Bryant, D.; Zhang, Y.; Grunnet-Jepsen, A.; Bhowmik, A.; Bos, P. Design of a large aperture tunable refractive Fresnel liquid crystal lens. Appl. Opt. 2018, 57, B10–B19. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Park, S.; Nam, S.; Park, B.; Park, S.K.; Mun, S.; Lim, J.M.; Kyung, K.-U. An electro-active polymer based lens module for dynamically varying focal system. Appl. Phys. Lett. 2016, 109, 141908. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Tan, G.; Zhan, T.; Weng, Y.; Liu, G.; Gou, F.; Peng, F.; Tabiryan, N.V.; Gauza, S.; Wu, S.-T. Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage 2017, 3, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Santiago, F.; Bagwell, B.E.; Pinon, V.; Krishna, S. Adaptive polymer lens for rapid zoom shortwave infrared imaging applications. Opt. Eng. 2014, 53, 125101. [Google Scholar] [CrossRef]
- Li, H.; Cheng, X.; Hao, Q. An electrically tunable zoom system using liquid lenses. Sensors 2016, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yuan, R.-Y.; Wang, J.-H.; Wang, Q.-H. Electrically optofluidic zoom system with a large zoom range and high-resolution image. Opt. Express 2017, 25, 22280–22297. [Google Scholar] [CrossRef] [PubMed]
- Kopp, D.; Brender, T.; Zappe, H. All-liquid dual-lens optofluidic zoom system. Appl. Opt. 2017, 56, 3758–3763. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, D.M.; Davis, J.A.; Hedman, T.R.; Lilly, R.A. Multiple imaging phase-encoded optical elements written as programmable spatial light modulators. Appl. Opt. 1990, 29, 2505–2509. [Google Scholar] [CrossRef] [PubMed]
- Haist, T.; Osten, W. Holography using pixelated spatial light modulators—Part 1: Theory and basic considerations. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 041310. [Google Scholar] [CrossRef]
- Neil, M.A.A.; Booth, M.J.; Wilson, T. Closed-loop aberration correction by use of a modal Zernike wave-front sensor. Opt. Lett. 2000, 25, 1083–1085. [Google Scholar] [CrossRef] [PubMed]
- Wick, D.V.; Martinez, T. Adaptive optical zoom. Opt. Eng. 2004, 43, 8–9. [Google Scholar]
- Iemmi, C.; Campos, J. Anamorphic zoom system based on liquid crystal displays. J. Eur. Opt. Soc. Rapid Pub. 2009, 4, 09029. [Google Scholar] [CrossRef]
- Lin, H.-C.; Collings, N.; Chen, M.-S.; Lin, Y.-H. A holographic projection system with an electrically tuning and continuously adjustable optical zoom. Opt. Express 2012, 20, 27222–27229. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-S.; Collings, N.; Lin, H.-C.; Lin, Y.-H. A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction. J. Disp. Technol. 2014, 10, 450–455. [Google Scholar] [CrossRef]
- Davis, J.A.; Lilly, R.A. Ray-matrix approach for diffractive optics. Appl. Opt. 1993, 32, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Moreno, I.; Tsai, P. Polarization eigenstates for twisted-nematic liquid crystal displays. Appl. Opt. 1998, 37, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Iemmi, C.; Márquez, A.; Campos, J.; Yzuel, M.J. Modulation light efficiency of diffractive lenses displayed onto a restricted phase-mostly modulation display. Appl. Opt. 2004, 43, 6278–6284. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Chambers, J.B.; Slovick, B.A.; Moreno, I. Wavelength dependent diffraction patterns from a liquid crystal display. Appl. Opt. 2008, 47, 4375–4380. [Google Scholar] [CrossRef] [PubMed]
- Exulus Spatial Light Modulator. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10378 (accessed on 19 June 2018).
- GAEA-2 Megapixel Phase Only Spatial Light Modulator (Refective). Available online: https://holoeye.com/spatial-light-modulators/gaea-4k-phase-only-spatial-light-modulator/ (accessed on 19 June 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, J.A.; Hall, T.I.; Moreno, I.; Sorger, J.P.; Cottrell, D.M. Programmable Zoom Lens System with Two Spatial Light Modulators: Limits Imposed by the Spatial Resolution. Appl. Sci. 2018, 8, 1006. https://doi.org/10.3390/app8061006
Davis JA, Hall TI, Moreno I, Sorger JP, Cottrell DM. Programmable Zoom Lens System with Two Spatial Light Modulators: Limits Imposed by the Spatial Resolution. Applied Sciences. 2018; 8(6):1006. https://doi.org/10.3390/app8061006
Chicago/Turabian StyleDavis, Jeffrey A., Trevor I. Hall, Ignacio Moreno, Jason P. Sorger, and Don M. Cottrell. 2018. "Programmable Zoom Lens System with Two Spatial Light Modulators: Limits Imposed by the Spatial Resolution" Applied Sciences 8, no. 6: 1006. https://doi.org/10.3390/app8061006
APA StyleDavis, J. A., Hall, T. I., Moreno, I., Sorger, J. P., & Cottrell, D. M. (2018). Programmable Zoom Lens System with Two Spatial Light Modulators: Limits Imposed by the Spatial Resolution. Applied Sciences, 8(6), 1006. https://doi.org/10.3390/app8061006