The Effects of Camelina “Soheil” as a Novel Biodiesel Fuel on the Performance and Emission Characteristics of Diesel Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oil Extraction Process and Determination of Oil Content
2.3. Determination of Fatty Acid Composition (FAC)
2.4. Transesterification Process
2.5. Characterization of Fuel Properties of Biodiesel from “Soheil” Oil (CSO)
2.6. Statistical Analysis (Statistical Optimization by RSM)
2.7. Engine Test
2.8. Uncertainties Analysis
3. Result and Discussion
3.1. Characterization of the Camelina “Soheil” Oil (CSO)
3.2. Statistical Analysis
3.3. Effects of Reaction Parameters on the Transesterification Process (Biodiesel Yield)
3.3.1. Molar Ratio (Methanol to Oil)—Reaction Time
3.3.2. Reaction Time (min)—Catalyst Concentration (wt %)
3.4. Optimization Process Using Response Surface Methodology (RSM)
3.5. Characterization and Properties of “Soheil” Biodiesel
3.6. Engine Performance
3.6.1. Engine Brake Power
3.6.2. Specific Fuel Consumption (SFC)
3.7. Engine Emissions
3.7.1. Carbon Monoxide (CO)
3.7.2. Carbon Dioxide (CO2)
3.7.3. Unburned Hydrocarbons (UHC)
3.7.4. Nitrogen Oxides (NOx)
4. Comparison of Performance and Emission with Biodiesel Obtained from Camelina “Soheil” Seed Oil
5. Conclusions
List of Symbols and Acronyms
B0 | Biodiesel 0% blend |
B10 | Biodiesel 10% blend |
B20 | Biodiesel 20% blend |
BP | Brake power |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
CSO | Camelina “Soheil” seed oil |
FAC | Fatty acid composition |
GC | Gas chromatography |
KOH | potassium hydroxide |
NaOCH3 | Sodium methoxide |
NOx | nitrogen oxide |
RSM | response surface methodology |
SFC | specific fuel consumption |
UHC | Unburned hydrocarbon |
Author Contributions
Funding
Conflicts of Interest
References
- Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy consumption in brazilian amazonia using DMSP night-time satellite data. Comput. Environ. Urban Syst. 2005, 29, 179–195. [Google Scholar] [CrossRef]
- Holdren, J.P.; Ehrlich, P.R. Human population and the global environment: Population growth, rising per capita material consumption, and disruptive technologies have made civilization a global ecological force. Am. Sci. 1974, 62, 282–292. [Google Scholar] [PubMed]
- Nabi, M.N.; Akhter, M.S.; Shahadat, M.M.Z. Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Bioresour. Technol. 2006, 97, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, A. On the emissions from internal-combustion engines: A review. Int. J. Energy Res. 1998, 22, 483–513. [Google Scholar] [CrossRef]
- Nelson, P.F.; Tibbett, A.R.; Day, S.J. Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles. Atmos. Environ. 2008, 42, 5291–5303. [Google Scholar] [CrossRef]
- Lapuerta, M.; Armas, O.; Rodriguez-Fernandez, J. Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. Sci. 2008, 34, 198–223. [Google Scholar] [CrossRef]
- Amin, S. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manag. 2009, 50, 1834–1840. [Google Scholar] [CrossRef]
- Peri, M.; Baldi, L. Vegetable oil market and biofuel policy: An asymmetric cointegration approach. Energy Econ. 2010, 32, 687–693. [Google Scholar] [CrossRef]
- Boz, N.; Degirmenbasi, N.; Kalyon, D.M. Conversion of biomass to fuel: Transesterification of vegetable oil to biodiesel using KF loaded nano-γ-Al2O3 as catalyst. Appl. Catal. B Environ. 2009, 89, 590–596. [Google Scholar] [CrossRef]
- Lee, H.V.; Yunus, R.; Juan, J.C.; Taufiq-Yap, Y.H. Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Process. Technol. 2011, 92, 2420–2428. [Google Scholar] [CrossRef]
- Basha, S.A.; Gopal, K.R.; Jebaraj, S. A review on biodiesel production, combustion, emissions and performance. Renew. Sustain. Energy Rev. 2009, 13, 1628–1634. [Google Scholar] [CrossRef]
- Cárdenas, M.D.; Armas, O.; Mata, C.; Soto, F. Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel 2016, 185, 743–762. [Google Scholar] [CrossRef]
- Lapuerta, M.; Villajos, M.; Agudelo, J.R.; Boehman, A.L. Key properties and blending strategies of hydrotreated vegetable oil as biofuel for diesel engines. Fuel Process. Technol. 2011, 92, 2406–2411. [Google Scholar] [CrossRef]
- Freedman, B.; Pryde, E.; Mounts, T. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 1984, 61, 1638–1643. [Google Scholar] [CrossRef]
- Demirbas, A. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manag. 2008, 49, 125–130. [Google Scholar] [CrossRef]
- Atabani, A.; Silitonga, A.; Ong, H.; Mahlia, T.; Masjuki, H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef]
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Mucak, A.; Karabektas, M.; Hasimoglu, C.; Ergen, G. Performance and emission characteristics of a diesel engine fuelled with emulsified biodiesel-diesel fuel blends. Int. J. Autom. Eng. Technol. 2016, 5, 176–185. [Google Scholar]
- Faried, M.; Samer, M.; Abdelsalam, E.; Yousef, R.S.; Attia, Y.A.; Ali, A.S. Biodiesel production from microalgae: Processes, technologies and recent advancements. Renew. Sustain. Energy Rev. 2017, 79, 893–913. [Google Scholar] [CrossRef]
- Shah, S.H.; Raja, I.A.; Rizwan, M.; Rashid, N.; Mahmood, Q.; Shah, F.A.; Pervez, A. Potential of microalgal biodiesel production and its sustainability perspectives in pakistan. Renew. Sustain. Energy Rev. 2018, 81, 76–92. [Google Scholar] [CrossRef]
- Bueno, A.V.; Pereira, M.P.B.; de Oliveira Pontes, J.V.; de Luna, F.M.T.; Cavalcante, C.L. Performance and emissions characteristics of castor oil biodiesel fuel blends. Appl. Therm. Eng. 2017, 125, 559–566. [Google Scholar] [CrossRef]
- Roy, M.M.; Wang, W.; Alawi, M. Performance and emissions of a diesel engine fueled by biodiesel–diesel, biodiesel–diesel-additive and kerosene–biodiesel blends. Energy Convers. Manag. 2014, 84, 164–173. [Google Scholar] [CrossRef]
- Dharma, S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I. Optimization of biodiesel production process for mixed Jatropha curcas-Ceiba pentandra biodiesel using response surface methodology. Energy Convers. Manag. 2016, 115, 178–190. [Google Scholar] [CrossRef]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Rahimi, A.; Yusaf, T.; Mamat, R.; Sidik, N.A.C.; Azmi, W.H. Effects of biodiesel fuel obtained from salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine. Energy 2017, 131, 289–296. [Google Scholar] [CrossRef]
- Castro Gonzáles, N.F. International experiences with the cultivation of Jatropha curcas for biodiesel production. Energy 2016, 112, 1245–1258. [Google Scholar] [CrossRef]
- Yang, P.-M.; Lin, K.C.; Lin, Y.-C.; Jhang, S.-R.; Chen, S.-C. Emission evaluation of a diesel engine generator operating with a proportion of isobutanol as a fuel additive in biodiesel blends. Appl. Therm. Eng. 2016, 100, 628–635. [Google Scholar] [CrossRef]
- Srinivasa Rao, M.; Anand, R.B. Performance and emission characteristics improvement studies on a biodiesel fuelled DICI engine using water and ALO(OH) nanoparticles. Appl. Therm. Eng. 2016, 98, 636–645. [Google Scholar] [CrossRef]
- Maghami, M.; Sadrameli, S.M.; Ghobadian, B. Production of biodiesel from fishmeal plant waste oil using ultrasonic and conventional methods. Appl. Therm. Eng. 2015, 75, 575–579. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Pyrc, M.; Sobiepański, M. A comparative study of co-combustion process of diesel-ethanol and biodiesel-ethanol blends in the direct injection diesel engine. Appl. Therm. Eng. 2017, 117, 155–163. [Google Scholar] [CrossRef]
- Khoobbakht, G.; Najafi, G.; Karimi, M.; Akram, A. Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology. Appl. Therm. Eng. 2016, 99, 1006–1017. [Google Scholar] [CrossRef]
- Nabi, M.N.; Rahman, M.M.; Akhter, M.S. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Appl. Therm. Eng. 2009, 29, 2265–2270. [Google Scholar] [CrossRef]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Mamat, R.; Ebadi, M.T.; Yusaf, T. Ailanthus altissima (tree of heaven) seed oil: Characterisation and optimisation of ultrasonication-assisted biodiesel production. Fuel 2018, 220, 621–630. [Google Scholar] [CrossRef]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Mamat, R.; Sidik, N.A.C.; Azmi, W.H. The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renew. Sustain. Energy Rev. 2017, 73, 307–331. [Google Scholar] [CrossRef]
- Patil, P.D.; Gude, V.G.; Deng, S. Biodiesel production from Jatropha curcas, waste cooking, and Camelina sativa oils. Ind. Eng. Chem. Res. 2009, 48, 10850–10856. [Google Scholar] [CrossRef]
- Gunawan, S.; Maulana, S.; Anwar, K.; Widjaja, T. Rice bran, a potential source of biodiesel production in Indonesia. Ind. Crop. Prod. 2011, 33, 624–628. [Google Scholar] [CrossRef]
- Zanuttini, M.S.; Pisarello, M.L.; Querini, C.A. Butia yatay coconut oil: Process development for biodiesel production and kinetics of esterification with ethanol. Energy Convers. Manag. 2014, 85, 407–416. [Google Scholar] [CrossRef]
- Hajinezhad, A.; Abedi, S.; Ghobadian, B.; Noorollahi, Y. Biodiesel production from norouzak (Salvia lerifolia) seeds as an indigenous source of bio fuel in iran using ultrasound. Energy Convers. Manag. 2015, 99, 132–140. [Google Scholar] [CrossRef]
- Silveira Junior, E.G.; Simionatto, E.; Perez, V.H.; Justo, O.R.; Zárate, N.A.H.; Vieira, M.d.C. Potential of virginia-type peanut (Arachis hypogaea L.) as feedstock for biodiesel production. Ind. Crop. Prod. 2016, 89, 448–454. [Google Scholar] [CrossRef]
- Kakati, J.; Gogoi, T.K. Biodiesel production from kutkura (Meyna spinosa roxb. Ex.) fruit seed oil: Its characterization and engine performance evaluation with 10% and 20% blends. Energy Convers. Manag. 2016, 121, 152–161. [Google Scholar] [CrossRef]
- Ijaz, M.; Bahtti, K.H.; Anwar, Z.; Dogar, U.F.; Irshad, M. Production, optimization and quality assessment of biodiesel from Ricinus communis L. Oil. J. Radiat. Res. Appl. Sci. 2016, 9, 180–184. [Google Scholar] [CrossRef]
- Soukht Saraee, H.; Jafarmadar, S.; Sayadi, M.; Parikhani, A.; Kheyrollahi, J.; Pourvosoughi, N. Green fuel production from Pistacia khinjuk and its engine test analysis as a promising alternative. J. Clean. Prod. 2017, 156, 106–113. [Google Scholar] [CrossRef]
- Fröhlich, A.; Rice, B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crop. Prod. 2005, 21, 25–31. [Google Scholar] [CrossRef]
- Bernardo, A.; Howard-Hildige, R.; O’Connell, A.; Nichol, R.; Ryan, J.; Rice, B.; Roche, E.; Leahy, J.J. Camelina oil as a fuel for diesel transport engines. Ind. Crops Prod. 2003, 17, 191–197. [Google Scholar] [CrossRef]
- Kruczyński, S.W. Performance and emission of ci engine fuelled with Camelina sativa oil. Energy Convers. Manag. 2013, 65, 1–6. [Google Scholar] [CrossRef]
- Moser, B.R.; Vaughn, S.F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour. Technol. 2010, 101, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Caldwell, C.; Corscadden, K.; He, Q.S.; Li, J. An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind. Crop. Prod. 2016, 81, 162–168. [Google Scholar] [CrossRef]
- Emiroğlu, A.O.; Şen, M. Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Appl. Therm. Eng. 2018, 133, 371–380. [Google Scholar] [CrossRef]
- Geng, P.; Mao, H.; Zhang, Y.; Wei, L.; You, K.; Ju, J.; Chen, T. Combustion characteristics and nox emissions of a waste cooking oil biodiesel blend in a marine auxiliary diesel engine. Appl. Therm. Eng. 2017, 115, 947–954. [Google Scholar] [CrossRef]
- Ibrahim, A. Performance and combustion characteristics of a diesel engine fuelled by butanol–biodiesel–diesel blends. Appl. Therm. Eng. 2016, 103, 651–659. [Google Scholar] [CrossRef]
- Raziei, Z.; Kahrizi, D.; Rostami-Ahmadvandi, H. Effects of climate on fatty acid profile in Camelina sativa. Cell. Mol. Biol. 2018, 64, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Maccarone, E.; Fallico, B.; Fanella, F.; Mauromicale, G.; Raccuia, S.; Foti, S. Possible alternative utilization of Cynara spp.: Ii. Chemical characterization of their grain oil. Ind. Crop. Prod. 1999, 10, 229–237. [Google Scholar] [CrossRef]
- Metcalfe, L.; Schmitz, A.A.; Pelka, J. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 1966, 38, 514–515. [Google Scholar] [CrossRef]
- Van Gerpen, J. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Mani, M.; Nagarajan, G. Influence of injection timing on performance, emission and combustion characteristics of a di diesel engine running on waste plastic oil. Energy 2009, 34, 1617–1623. [Google Scholar] [CrossRef]
- Kannan, G.R.; Karvembu, R.; Anand, R. Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Appl. Energy 2011, 88, 3694–3703. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Sbihi, H.M.; Al-Resayes, S.I. Rhazya stricta decne seed oil as an alternative, non-conventional feedstock for biodiesel production. Energy Convers. Manag. 2014, 81, 400–406. [Google Scholar] [CrossRef]
- Koh, M.Y.; Ghazi, T.I.M. A review of biodiesel production from Jatropha curcas L. Oil. Renew. Sustain. Energy Rev. 2011, 15, 2240–2251. [Google Scholar] [CrossRef]
- Silitonga, A.; Masjuki, H.; Mahlia, T.; Ong, H.C.; Kusumo, F.; Aditiya, H.; Ghazali, N. Schleichera oleosa L. oil as feedstock for biodiesel production. Fuel 2015, 156, 63–70. [Google Scholar] [CrossRef]
- Gao, L.; Xu, B.; Xiao, G.; Lv, J. Transesterification of palm oil with methanol to biodiesel over a KF/hydrotalcite solid catalyst. Energy Fuels 2008, 22, 3531–3535. [Google Scholar] [CrossRef]
- Sivakumar, P.; Sindhanaiselvan, S.; Gandhi, N.N.; Devi, S.S.; Renganathan, S. Optimization and kinetic studies on biodiesel production from underutilized Ceiba pentandra oil. Fuel 2013, 103, 693–698. [Google Scholar] [CrossRef]
- Apostolakou, A.; Kookos, I.; Marazioti, C.; Angelopoulos, K. Techno-economic analysis of a biodiesel production process from vegetable oils. Fuel Process. Technol. 2009, 90, 1023–1031. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F. Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 2008, 87, 3572–3578. [Google Scholar] [CrossRef]
- Armas, O.; Martínez-Martínez, S.; Mata, C. Effect of an ethanol–biodiesel–diesel blend on a common rail injection system. Fuel Process. Technol. 2011, 92, 2145–2153. [Google Scholar] [CrossRef]
- Pereira, R.G.; Oliveira, C.D.; Oliveira, J.L.; Oliveira, P.C.P.; Fellows, C.E.; Piamba, O.E. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renew. Energy 2007, 32, 2453–2460. [Google Scholar] [CrossRef]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Ejim, C.; Fleck, B.; Amirfazli, A. Analytical study for atomization of biodiesels and their blends in a typical injector: Surface tension and viscosity effects. Fuel 2007, 86, 1534–1544. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Sbihi, H.; Tan, C.P.; Al-Resayes, S.I. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production. Bioresour. Technol. 2012, 126, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Lü, X.-C.; Yang, J.-G.; Zhang, W.-G.; Huang, Z. Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol–diesel blend fuel. Fuel 2004, 83, 2013–2020. [Google Scholar]
- İçıngür, Y.; Altiparmak, D. Effect of fuel cetane number and injection pressure on a di diesel engine performance and emissions. Energy Convers. Manag. 2003, 44, 389–397. [Google Scholar] [CrossRef]
- Bayraktar, H. Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines. Renew. Energy 2005, 30, 1733–1747. [Google Scholar] [CrossRef]
- Celik, M.B. Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Appl. Therm. Eng. 2008, 28, 396–404. [Google Scholar] [CrossRef]
- Selvan, V.A.M.; Anand, R.; Udayakumar, M. Effects of cerium oxide nanoparticle addition in diesel and diesel–biodiesel–ethanol blends on the performance and emission characteristics of a ci engine. J. Eng. Appl. Sci. 2009, 4, 1819–6608. [Google Scholar]
- Al-Hasan, M. Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manag. 2003, 44, 1547–1561. [Google Scholar] [CrossRef]
- Hsieh, W.-D.; Chen, R.-H.; Wu, T.-L.; Lin, T.-H. Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmos. Environ. 2002, 36, 403–410. [Google Scholar] [CrossRef]
- Wu, C.-W.; Chen, R.-H.; Pu, J.-Y.; Lin, T.-H. The influence of air–fuel ratio on engine performance and pollutant emission of an SI engine using ethanol–gasoline-blended fuels. Atmos. Environ. 2004, 38, 7093–7100. [Google Scholar] [CrossRef]
- Ozsezen, A.N.; Canakci, M. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters. Energy Convers. Manag. 2011, 52, 108–116. [Google Scholar] [CrossRef]
Reference | Raw Material | Biodiesel Properties | Effect of Biodiesel on Performance and Emission of Diesel Engine |
---|---|---|---|
[42] | Camelina sativa (camelina) | The methyl ester produced from camelina oil has properties similar to rape methyl ester, with the exception of its higher iodine value. | Fuel consumption and general vehicle operation with camelina ester are similar to what one would expect from rape methyl ester. |
[43] | Camelina sativa seed oil | Accelerated thermal ageing tests on the camelina oil suggest that Camelina oil is susceptible to oxidation with significant reduction in degree of unsaturation and corresponding increase in viscosity. |
|
[44] | Camelina sativa oil |
|
|
[45] | Camelina sativa oil |
| Not described |
[46] | Camelina sativa grown in Nova Scotia |
| Not described |
Independent Variables | Symbols | Levels of Each Factor | ||
---|---|---|---|---|
Catalyst concentration (wt %) | A | 1 | 1.5 | 2 |
Molar ratio (alcohol to oil) | B | 2:1 | 7:1 | 12:1 |
Reaction time (min) | C | 2 | 6 | 10 |
Technical Spec. | |
---|---|
Model | 3LD 510, Battipaglia-Salerno-ITALY |
No. of cylinder | 1 |
Bore × Stroke (mm) | 85 × 90 |
Cyl. Vol. (cm3) | 510 |
Comp. Ratio | 17.5:1 |
Max. Power (kW) | 9 |
Max. Torque (Nm) @1800 rpm | 33 |
Instruments | Measuring Range | Accuracy | Percentage Uncertainties |
---|---|---|---|
AVL DITEST GAS 1000 | CO 0–15% vol. | <10.0% vol.: ±0.02% vol., ±3% o.M.≥10.0% vol: ±5% o. M. | ±0.3 |
CO2 0–20% vol. | <16.0% vol.: ±0, 3% vol., ±3% o.M.≥16.0% vol: ±5% o. M. | ±0.2 | |
HC 0–30,000 ppm vol. | <2000 ppm vol.: ±4 ppm vol., ±3% o.M.≥5000 ppm vol.: ±5% o. M.≥10,000 ppm vol.: ±10% o. M | ±0.2 | |
O2 0–25% vol. | ±0.02% vol.±1% o.M. | ±0.3 | |
NOx 0–5000 ppm vol. | ±5 ppm vol.±1% o. M. | ±0.2 |
Properties | Units | Measured Property |
---|---|---|
Density | g/cm3 | 0.92 |
Kinematic viscosity | mPa·s | 33 |
Acid value | Mg KOH/g oil | 0.89 |
Water content | mg/g | 0.10 |
Palmitic acid (C16:0) | wt % | 4.53 |
Stearic acid (C18:0) | wt % | 1.94 |
Oleic acid (C18:1) * | wt % | 11.12 |
Linoleic acid (C18:2) * | wt % | 15.15 |
Linolenic acid (C18:3) * | wt % | 23.01 |
Other fatty acids | wt % | 44.25 |
Statistical Model | Std. Dev. | CV% | R2 | Adjusted R2 | Predicted R2 | PRESS | |
---|---|---|---|---|---|---|---|
Linear | 6.52 | 7.78 | 0.6662 | 0.5828 | 0.3431 | 1002.89 | |
2FI | 5.36 | 6.4 | 0.8308 | 0.7180 | 0.1991 | 1222.48 | |
Quadratic | 2.26 | 2.69 | 0.98 | 0.95 | N/A | N/A | Suggested |
Cubic | 2.24 | 2.67 | 0.9869 | 0.9508 | N/A | N/A | Aliased |
Source | Sum of Squares | df | Mean-Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 1496.219 | 9 | 166.2466 | 32.66114 | 0.0002 |
A—Catalyst concentration (wt %) | 133.6698 | 1 | 133.6698 | 26.26103 | 0.0022 |
B—molar ratio (methanol to oil) | 608.7634 | 1 | 608.7634 | 119.5989 | <0.0001 |
C—reaction time (min) | 123.7505 | 1 | 123.7505 | 24.31228 | 0.0026 |
AB | 27.80006 | 1 | 27.80006 | 5.461656 | 0.0581 |
AC | 81.01741 | 1 | 81.01741 | 15.91684 | 0.0072 |
BC | 61.22434 | 1 | 61.22434 | 12.02826 | 0.0133 |
A2 | 6.267942 | 1 | 6.267942 | 1.231413 | 0.3096 |
B2 | 212.6612 | 1 | 212.6612 | 41.77985 | 0.0007 |
C2 | 0.000162 | 1 | 0.000162 | 3.19 × 10−5 | 0.9957 |
Residual | 30.54025 | 6 | 5.090042 | ||
Lack of Fit | 10.51385 | 2 | 5.256923 | 1.049998 | 0.4300 |
Pure Error | 20.02641 | 4 | 5.006602 | ||
Std. Dev. | 2.26 | ||||
C.V% | 2.69 |
Property | Test Method | Limits | Units | Measured Property |
---|---|---|---|---|
Water and Sediment | ASTM D2709 | 0.05 max | %volume | <0.004 |
Density at 15 °C | ASTM D4052 | 0.86–0.90 | g/cm3 | 0.883 |
Kinematic Viscosity @ 40 °C | ASTM D445 | 1.9–6.0 | mm2/s | 4.01 |
Methanol Content | EN 14110 | 0.20 max | %volume | 0 < 0.01 |
Flash Point, Closed Cup | D93 | 130 min | °C | 154 |
Cloud point | ASTM D6751 | −3 to 12 | °C | −2 |
Pour point | ASTM D6751 | −15 to 10 | °C | −6 |
Cetane Number | ASTM D613 | - | 46 | |
Carbon Residue | ASTM D4530 | 0.05 max | %mass | 0.02 |
Acid Number | ASTM D664 | 0.50 max | mg KOH/g | 0.27 |
Total Glycerin | ASTM D6584 | 0.24 | %mass | 0.175 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Yusaf, T.; Ebadi, M.T. The Effects of Camelina “Soheil” as a Novel Biodiesel Fuel on the Performance and Emission Characteristics of Diesel Engine. Appl. Sci. 2018, 8, 1010. https://doi.org/10.3390/app8061010
Hoseini SS, Najafi G, Ghobadian B, Yusaf T, Ebadi MT. The Effects of Camelina “Soheil” as a Novel Biodiesel Fuel on the Performance and Emission Characteristics of Diesel Engine. Applied Sciences. 2018; 8(6):1010. https://doi.org/10.3390/app8061010
Chicago/Turabian StyleHoseini, Seyed Salar, Gholamhassam Najafi, Barat Ghobadian, Talal Yusaf, and Mohammad Taghi Ebadi. 2018. "The Effects of Camelina “Soheil” as a Novel Biodiesel Fuel on the Performance and Emission Characteristics of Diesel Engine" Applied Sciences 8, no. 6: 1010. https://doi.org/10.3390/app8061010
APA StyleHoseini, S. S., Najafi, G., Ghobadian, B., Yusaf, T., & Ebadi, M. T. (2018). The Effects of Camelina “Soheil” as a Novel Biodiesel Fuel on the Performance and Emission Characteristics of Diesel Engine. Applied Sciences, 8(6), 1010. https://doi.org/10.3390/app8061010