Extended Critical Damping Adjustment Method for Electromagnetic Transients Simulation in Power Systems
Abstract
:1. Introduction
2. A New Class of Linear Multistep Formulae
2.1. Construction of a New Class of Linear Multistep Formulae by Classic Differential Quadrature
2.2. The Compatibility and Convergence of the L2MF
2.3. Stability of the L2MF
3. Extended Critical Damping Adjustment Scheme
4. Simulation Examples
4.1. Simulation of Half-Wave Rectifier Circuit
4.2. Simulation of High-Voltage Transmission Line without Load Being Switched-In Suddenly
4.3. Very Fast Transient Overvoltage Calculation
4.4. RC Series Circuit Simulation Calculation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ji, Y.; Xu, J.; Xu, Y.; Zhao, C. Design of damping circuit for depressing numerical oscillation in interpolation-free simulation environment. Electr. Power Autom. Equip. 2016, 36, 143–149. [Google Scholar]
- Chi, Y.; Shu, D.; Zhang, C.; Wei, L.; Jiang, Q. A parameterized rational-fraction fitting algorithm for numerical oscillation suppression in weak AC grid. Power Syst. Technol. 2016, 40, 1792–1796. [Google Scholar]
- Yang, M.; Wang, F. 2-stage 3-order diagonally implicit Runge-Kutta method for electromagnetic transient calculation. Power Syst. Protect. Control 2017, 45, 68–73. [Google Scholar]
- Noda, T.; Takenaka, K.; Inoue, T. Numerical integration by the 2-stage diagonally implicit Runge-Kutta method for electromagnetic transient simulations. IEEE Trans. Power Deliv. 2009, 24, 390–399. [Google Scholar] [CrossRef]
- Shang, Y.; Yu, Y.M.; Zou, Z.Y.; Li, F.J.; Chen, B. An advanced method of non-linear circuit eliminating numerical oscillation in electromagnetic transient simulation. Power Syst. Protect. Control 2011, 39, 142–146. [Google Scholar]
- Lin, J.; Marti, J.R. Implementation of the CDA procedure in the EMTP. IEEE Trans. Power Syst. 1990, 5, 394–402. [Google Scholar]
- Marti, J.R.; Lin, J. Suppression of numerical oscillation in the EMTP. IEEE Trans. Power Syst. 1989, 4, 739–747. [Google Scholar] [CrossRef]
- Watson, N.; Arrillaga, J. Power Systems Electromagnetic Transients Simulation; IET Press: London, UK, 2003; pp. 221–230. [Google Scholar]
- Wang, C.; Li, P.; Wang, L. Progresses on algorithm of electromagnetic transient simulation for electric power system. Autom. Electr. Power Syst. 2009, 33, 97–103. [Google Scholar]
- Ji, F.; Wei, X.; Wu, X.; Liu, J.; Xu, W. State space method to analyze the electromagnetic transient of linear switching circuit. Proc. CSEE 2016, 36, 6028–6037. [Google Scholar]
- Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations; Prentice Hall: Upper Saddle River, NJ, USA, 1971. [Google Scholar]
- Bellman, R.; Casti, J. Differential quadrature and long-term integration. J. Math. Anal. Appl. 1971, 34, 235–238. [Google Scholar] [CrossRef]
- Wang, F.; Liao, X.; Xie, X. Stability Analysis and Order Improvement for Time Domain Differential Quadrature Method. Adv. Appl. Math. Mech. 2016, 8, 128–144. [Google Scholar]
- Wang, F.; Wang, Y. A Coupled Pseudospectral-Differential Quadrature Method for a Class of Hyperbolic Telegraph Equations. Math. Probl. Eng. 2017, 2017, 9013826. [Google Scholar] [CrossRef]
- Quan, J.R.; Chang, C.T. New insights in solving distributed system equations by the quadrature methods, Part I: Analysis. Comput. Chem. Eng. 1989, 13, 779–788. [Google Scholar] [CrossRef]
- Wang, F.; Liao, X.; Xie, X. Characteristics of the Differential Quadrature Method and Its Improvement. Math. Probl. Eng. 2015, 2015, 657494. [Google Scholar] [CrossRef]
- Brugnano, L.; Trigiante, D. Boundary value methods: The third way between linear multistep and Runge-Kutta methods. Comput. Math. Appl. 1998, 36, 269–284. [Google Scholar] [CrossRef]
- Liu, D.; Yang, D. A linear 3-step formula of 3-order with a large absolutely stable region. J. Panzhihua Univ. 2008, 6, 66–69. [Google Scholar]
- Yuan, Z.; Fei, J.; Liu, D. Numerical Solution of the Initial Value Problem of Stiff Ordinary Differential Equations; Science Press: Beijing, China, 1987. [Google Scholar]
- Cangellaris, A.C.; Pasha, S.; Prince, J.L.; Celik, M. A new discrete transmission line model for passive model order reduction and macromodeling of high-speed interconnections. IEEE Trans. Adv. Packag. 1999, 22, 356–364. [Google Scholar] [CrossRef]
- Duan, S.F.; Zhao, L.; Li, Z.B.; Zhan, H.M.; Li, C.R. Experimental and simulation study on statistical characteristics of VFTO and VFTC in GIS. Power Syst. Technol. 2015, 39, 3634–3640. [Google Scholar]
- Du, W.; Li, Y.G.; Liu, J.M. A new VFTO whole process simulation method based on time domain finite element. Proc. CSEE 2014, 34, 3004–3012. [Google Scholar]
- Wang, F.; Yang, M. Fast electromagnetic transient simulation for over-voltages of transmission line by high order Radau method and V-transformation. IET Gener. Transm. Distrib. 2016, 10, 3639–3645. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, Y.; Rao, H.; Zhang, L.; Ye, J.; Lei, X.; Chen, B. Extended Critical Damping Adjustment Method for Electromagnetic Transients Simulation in Power Systems. Appl. Sci. 2018, 8, 883. https://doi.org/10.3390/app8060883
Li Q, Wang Y, Rao H, Zhang L, Ye J, Lei X, Chen B. Extended Critical Damping Adjustment Method for Electromagnetic Transients Simulation in Power Systems. Applied Sciences. 2018; 8(6):883. https://doi.org/10.3390/app8060883
Chicago/Turabian StyleLi, Qiang, Yong Wang, Huaxing Rao, Lei Zhang, Jing Ye, Xiaolin Lei, and Bingwen Chen. 2018. "Extended Critical Damping Adjustment Method for Electromagnetic Transients Simulation in Power Systems" Applied Sciences 8, no. 6: 883. https://doi.org/10.3390/app8060883
APA StyleLi, Q., Wang, Y., Rao, H., Zhang, L., Ye, J., Lei, X., & Chen, B. (2018). Extended Critical Damping Adjustment Method for Electromagnetic Transients Simulation in Power Systems. Applied Sciences, 8(6), 883. https://doi.org/10.3390/app8060883