Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy
Abstract
:1. Introduction
2. Technology
Principles of QPI
3. Cell Death Studies with QPI
4. Choice of Cell Culture and Imaging Vessel
5. Automated Analysis and QPI
6. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 1942, 9, 686–698. [Google Scholar] [CrossRef]
- Nomarski, G. Microinterféromètre différentiel à ondes polarisées. J. Phys. Rad. 1955, 16, 9S–13S. [Google Scholar]
- Hoffman, R. The modulation contrast microscope: Principles and performance. J. Microsc. 1977, 110, 205–222. [Google Scholar] [CrossRef]
- Popescu, G. Quantitative Phase Imaging of Cells and Tissues; McGraw Hill Professional: New York, NY, USA, 2011; p. 385. [Google Scholar]
- Kemper, B.; Von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 2008, 47, A52–A61. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010, 1, 018005. [Google Scholar] [CrossRef]
- Guo, P.; Huang, J.; Moses, M.A. Characterization of dormant and active human cancer cells by quantitative phase imaging. Cytometry Part A 2017, 91, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Wang, Z.; Shen, Z.; Bednarz, M.; Bashir, R.; Golding, I.; Prasanth, S.G.; Popescu, G. Optical measurement of cycle-dependent cell growth. Proc. Natl. Acad. Sci. USA 2011, 108, 13124–13129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, W.; Zhang, Z.; Wang, D.; Liu, Y.; Bartlett, P.F.; He, R. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Sci. Rep. 2016, 6, 22624. [Google Scholar] [CrossRef] [PubMed]
- Antal, O.; Hackler, L.; Shen, J.; Mán, I.; Hideghéty, K.; Kitajka, K.; Puskás, L.G. Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: Cellular, biochemical and gene expression analysis. Lipids Health Dis. 2014, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Hackler, L., Jr.; Ózsvári, B.; Gyuris, M.; Sipos, P.; Fábián, G.; Molnár, E.; Marton, A.; Faragó, N.; Mihály, J.; Nagy, L.I. The curcumin analog C-150, influencing NF-κB, UPR and Akt/Notch pathways has potent anticancer activity in vitro and in vivo. PLoS ONE 2016, 11, e0149832. [Google Scholar] [CrossRef] [PubMed]
- Cirenajwis, H.; Smiljanic, S.; Honeth, G.; Hegardt, C.; Marton, L.J.; Oredsson, S.M. Reduction of the putative CD44+CD24- breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anticancer Drugs 2010, 21, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Kamlund, S.; Strand, D.; Janicke, B.; Alm, K.; Oredsson, S. Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy. Cell Cycle 2017, 16, 2128–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, J.; Mölder, A.; Pettersson, S.; Alm, K. Cell motility studies using digital holographic microscopy. In Microscopy: Science, Technology, Applications and Education; Méndez-Vilas, A., Díaz, J., Eds.; FORMATEX: Badajoz, Spain, 2010; Volume 3. [Google Scholar]
- Mir, M.; Bergamaschi, A.; Katzenellenbogen, B.S.; Popescu, G. Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response. PLoS ONE 2014, 9, e89000. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, Z.; Hao, Q.; Li, W.; Xu, Y.; Zhang, J.; Zhang, W.; Wang, S.; Liu, S.; Li, M. Loss of ERα induces amoeboid-like migration of breast cancer cells by downregulating vinculin. Nat. Commun. 2017, 8, 14483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messica, Y.; Laser-Azogui, A.; Volberg, T.; Elisha, Y.; Lysakovskaia, K.; Eils, R.; Gladilin, E.; Geiger, B.; Beck, R. The role of vimentin in regulating cell invasive migration in dense cultures of breast carcinoma cells. Nano Lett. 2017, 17, 6941–6948. [Google Scholar] [CrossRef] [PubMed]
- Schwickert, A.; Weghake, E.; Brüggemann, K.; Engbers, A.; Brinkmann, B.F.; Kemper, B.; Seggewiß, J.; Stock, C.; Ebnet, K.; Kiesel, L. microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha V, and additional cytoskeletal elements. PLoS ONE 2015, 10, e0143993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.K.; Ahrens, C.C.; Li, W.; Vanapalli, S.A. Label-free, high-throughput holographic screening and enumeration of tumor cells in blood. Lab Chip 2017, 17, 2920–2932. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Ahrens, C.C.; Li, W.; Vanapalli, S.A. Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy. Biomed. Opt. Express 2017, 8, 536–554. [Google Scholar] [CrossRef] [PubMed]
- Mölder, A.; Sebesta, M.; Gustafsson, M.; Gisselson, L.; Wingren, A.G.; Alm, K. Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. J. Microsc. 2008, 232, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Janicke, B.; Kårsnäs, A.; Egelberg, P.; Alm, K. Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy. Cytometry Part A 2017, 91, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, S.; Kandel, M.E.; Sridharan, S.; Majeed, H.; Monroy, F.; Popescu, G. Active intracellular transport in metastatic cells studied by spatial light interference microscopy. J. Biomed. Opt. 2015, 20, 111209. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, B.; Pham, H.; Mir, M.; Popescu, G. Diffraction phase microscopy with white light. Opt. Lett. 2012, 37, 1094–1096. [Google Scholar] [CrossRef] [PubMed]
- Girshovitz, P.; Shaked, N.T. Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed. Opt. Express 2012, 3, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Sung, Y.; Lue, N.; Kim, Y.; So, P.T.; Yaqoob, Z. Large population cell characterization using quantitative phase cytometer. Cytometry Part A 2017, 91, 450–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, E.; Mendes, L.P.; Pan, J.; Costa, D.F.; Torchilin, V.P. Applications of label-free, quantitative phase holographic imaging cytometry to the development of multi-specific nanoscale pharmaceutical formulations. Cytometry Part A 2017, 91, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, G.; Park, Y.; Lue, N.; Best-Popescu, C.; Deflores, L.; Dasari, R.R.; Feld, M.S.; Badizadegan, K. Optical imaging of cell mass and growth dynamics. Am. J. Physiol.-Cell Physiol. 2008, 295, C538–C544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayarathna, S.; Chen, Y.; Kanwar, J.R.; Sasidharan, S. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods. Biomed. Pharmacother. 2017, 91, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Peter, B.; Nador, J.; Juhasz, K.; Dobos, A.; Korosi, L.; Székács, I.; Patko, D.; Horvath, R. Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: Validity of the measured parameters and their corrections. J. Biomed. Opt. 2015, 20, 067002. [Google Scholar] [CrossRef] [PubMed]
- Benzerdjeb, N.; Garbar, C.; Camparo, P.; Sevestre, H. Digital holographic microscopy as screening tool for cervical cancer preliminary study. Cancer Cytopathol. 2016, 124, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdemir, A.; Yildiz, M.; Senol, F.S.; Şimay, Y.D.; Ibişoglu, B.; Gokbulut, A.; Orhan, I.E.; Ark, M. Promising anticancer activity of Cyclotrichium niveum L. extracts through induction of both apoptosis and necrosis. Food Chem. Toxicol. 2017, 109, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Sriraman, S.K.; Pan, J.; Sarisozen, C.; Luther, E.; Torchilin, V. Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: In vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Mol. Pharm. 2016, 13, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Puthia, M.; Storm, P.; Nadeem, A.; Hsiung, S.; Svanborg, C. Prevention and treatment of colon cancer by peroral administration of HAMLET (human alpha-lactalbumin made lethal to tumour cells). Gut 2014, 63, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Ousingsawat, J.; Cabrita, I.; Wanitchakool, P.; Sirianant, L.; Krautwald, S.; Linkermann, A.; Schreiber, R.; Kunzelmann, K. Ca2+ signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cell. Mol. Life Sci. 2017, 74, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Mahjoubfar, A.; Tai, L.; Blaby, I.K.; Huang, A.; Niazi, K.R.; Jalali, B. Deep learning in label-free cell classification. Sci. Rep. 2016, 6, 21471. [Google Scholar] [CrossRef] [PubMed]
- Gisselsson, D.; Jin, Y.; Lindgren, D.; Persson, J.; Gisselsson, L.; Hanks, S.; Sehic, D.; Mengelbier, L.H.; Ora, I.; Rahman, N.; Mertens, F.; Mitelman, F.; Mandahl, N. Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc. Natl. Acad. Sci. USA 2010, 107, 20489–20493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzano, G.; Costa, D.F.; Sarisozen, C.; Luther, E.; Mattheolabakis, G.; Dhargalkar, P.P.; Torchilin, V.P. Mixed Nanosized Polymeric Micelles as Promoter of Doxorubicin and miRNA-34a Co-Delivery Triggered by Dual Stimuli in Tumor Tissue. Small 2016, 12, 4837–4848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.; Rydstrom, A.; Manimekalai, M.S.S.; Svanborg, C.; Grüber, G. Low resolution solution structure of HAMLET and the importance of its alpha-domains in tumoricidal activity. PLoS ONE 2012, 7, e53051. [Google Scholar] [CrossRef]
- Ogawa, H.; Koyanagi-Aoi, M.; Otani, K.; Zen, Y.; Maniwa, Y.; Aoi, T. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci. Rep. 2017, 7, 12317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Rajshekhar, G.; Wang, R.; Bhaduri, B.; Sridharan, S.; Mir, M.; Chakraborty, A.; Iyer, R.; Prasanth, S.; Millet, L. Phase correlation imaging of unlabeled cell dynamics. Sci. Rep. 2016, 6, 32702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyuris, M.; Hackler, L.; Nagy, L.I.; Alföldi, R.; Rédei, E.; Marton, A.; Vellai, T.; Faragó, N.; Ózsvári, B.; Hetényi, A. Mannich curcuminoids as potent anticancer agents. Arch. Pharm. 2017, 350. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.; Storm, P.; Rydstrom, A.; Bowen, B.; Alsin, F.; Sullivan, L.; Ambite, I.; Mok, K.H.; Northen, T.; Svanborg, C. Lipids as tumoricidal components of human alpha-lactalbumin made lethal to tumor cells (HAMLET): Unique and shared effects on signaling and death. J. Biol. Chem. 2013, 288, 17460–17471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sriraman, S.K.; Kenny, H.A.; Luther, E.; Torchilin, V.; Lengyel, E. Reversal of Chemoresistance in Ovarian Cancer by Co-Delivery of a P-Glycoprotein Inhibitor and Paclitaxel in a Liposomal Platform. Mol. Cancer Ther. 2016, 15, 2282–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemper, B.; Carl, D.D.; Schnekenburger, J.; Bredebusch, I.; Schäfer, M.; Domschke, W.; von Bally, G. Investigation of living pancreas tumor cells by digital holographic microscopy. J. Biomed. Opt. 2006, 11, 034005. [Google Scholar] [CrossRef] [PubMed]
- Kastl, L.; Isbach, M.; Dirksen, D.; Schnekenburger, J.; Kemper, B. Quantitative phase imaging for cell culture quality control. Cytometry Part A 2017, 91, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Petrovic, L.; La, J.; Celli, J.P.; Yelleswarapu, C.S. Digital holographic microscopy for longitudinal volumetric imaging of growth and treatment response in three-dimensional tumor models. J. Biomed. Opt. 2014, 19, 116001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Schich, Z.; Nilsson, E.; Gerdtsson, A.S.; Wingren, C.; Wingren, A.G. Interfacing antibody-based microarrays and digital holography enables label-free detection for loss of cell volume. Future Sci. OA 2015, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gál, B.; Veselý, M.; Čolláková, J.; Nekulová, M.; Jůzová, V.; Chmelík, R.; Veselý, P. Distinctive behaviour of live biopsy-derived carcinoma cells unveiled using coherence-controlled holographic microscopy. PLoS ONE 2017, 12, e0183399. [Google Scholar] [CrossRef] [PubMed]
- El-Schich, Z.; Mölder, A.; Tassidis, H.; Härkönen, P.; Falck Miniotis, M.; Gjörloff Wingren, A. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy. J. Struct. Biol. 2015, 189, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mölder, A.L.; Persson, J.; El-Schich, Z.; Czanner, S.; Gjörloff-Wingren, A. Supervised classification of etoposide-treated in vitro adherent cells based on noninvasive imaging morphology. J. Med. Imaging 2017, 4, 021106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenas, J.; Hedblom, A.; Miftakhova, R.R.; Sarwar, M.; Larsson, R.; Shcherbina, L.; Johansson, M.E.; Harkonen, P.; Sterner, O.; Persson, J.L. The role of PI3K/AKT-related PIP5K1alpha and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2014, 111, E3689–E3698. [Google Scholar] [CrossRef] [PubMed]
- Lajkó, E.; Bányai, P.; Zámbó, Z.; Kursinszki, L.; Szőke, É.; Kőhidai, L. Targeted tumor therapy by Rubia tinctorum L.: Analytical characterization of hydroxyanthraquinones and investigation of their selective cytotoxic, adhesion and migration modulator effects on melanoma cell lines (A2058 and HT168-M1). Cancer Cell Int. 2015, 15, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roitshtain, D.; Wolbromsky, L.; Bal, E.; Greenspan, H.; Satterwhite, L.L.; Shaked, N.T. Quantitative phase microscopy spatial signatures of cancer cells. Cytometry Part A 2017, 91, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Trulsson, M.; Yu, H.; Gisselsson, L.; Chao, Y.; Urbano, A.; Aits, S.; Mossberg, A.; Svanborg, C. HAMLET binding to α-actinin facilitates tumor cell detachment. PLoS ONE 2011, 6, e17179. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.; Tzur, A.; Oh, S.; Choi, W.; Li, V.; Dasari, R.R.; Yaqoob, Z.; Kirschner, M.W. Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 16687–16692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hejna, M.; Jorapur, A.; Song, J.S.; Judson, R.L. High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells. Sci. Rep. 2017, 7, 11943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janeckova, H.; Vesely, P.; Chmelik, R. Proving tumour cells by acute nutritional/energy deprivation as a survival threat: A task for microscopy. Anticancer Res. 2009, 29, 2339–2345. [Google Scholar] [PubMed]
- Chang, H.; Lin, Z.; Wu, M.; Wang, L.; Chow, Y.; Jiang, S.S.; Ch’ang, H.; Chang, V.H. Characterization of a transgenic mouse model exhibiting spontaneous lung adenocarcinomas with a metastatic phenotype. PLoS ONE 2017, 12, e0175586. [Google Scholar] [CrossRef] [PubMed]
- Calin, V.L.; Mihailescu, M.; Scarlat, E.I.; Baluta, A.V.; Calin, D.; Kovacs, E.; Savopol, T.; Moisescu, M.G. Evaluation of the metastatic potential of malignant cells by image processing of digital holographic microscopy data. FEBS Open Bio 2017, 7, 1527–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calin, V.L.; Mihailescu, M.; Mihale, N.; Baluta, A.V.; Kovacs, E.; Savopol, T.; Moisescu, M.G. Changes in optical properties of electroporated cells as revealed by digital holographic microscopy. Biomed. Opt. Express 2017, 8, 2222–2234. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Leslie, K.A.; Guest, D.; Yeshcheulova, O.; Roy, I.J.; Piva, M.; Moriceau, G.; Zangle, T.A.; Lo, R.S.; Teitell, M.A. High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug Resistance and Heterogeneity. Anal. Chem. 2018, 90, 3299–3306. [Google Scholar] [CrossRef] [PubMed]
- Greve, B.; Sheikh-Mounessi, F.; Kemper, B.; Ernst, I.; Götte, M.; Eich, H. Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther. Onkol. 2012, 188, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Langehanenberg, P.; Ivanova, L.; Bernhardt, I.; Ketelhut, S.; Vollmer, A.; Dirksen, D.; Georgiev, G.K.; von Bally, G.; Kemper, B. Automated three-dimensional tracking of living cells by digital holographic microscopy. J. Biomed. Opt. 2009, 14, 014018. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Cao, J.; Friedrich, K.; Kemper, B.; Brendel, O.; Grosser, M.; Adrian, M.; Baretton, G.; Breier, G.; Schnittler, H. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor–endothelial cell interactions. Histochem. Cell Biol. 2018, 149, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Pastorek, L.; Venit, T.; Hozák, P. Holography microscopy as an artifact-free alternative to phase-contrast. Histochem. Cell Biol. 2018, 149, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, K.; Jung, J.; Heo, J.; Cho, S.; Lee, S.; Chang, G.; Jo, Y.; Park, H.; Park, Y. Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications. Sensors 2013, 13, 4170–4191. [Google Scholar] [CrossRef] [PubMed]
- Majeed, H.; Sridharan, S.; Mir, M.; Ma, L.; Min, E.; Jung, W.; Popescu, G. Quantitative phase imaging for medical diagnosis. J. Biophotonics 2017, 10, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Holden, E.; Tárnok, A.; Popescu, G. Quantitative phase imaging for label-free cytometry. Cytometry Part A 2017, 91, 407–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majeed, H.; Okoro, C.; Kajdacsy-Balla, A.; Toussaint, K.C.; Popescu, G. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging. J. Biomed. Opt. 2017, 22, 046004. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Fang-Yen, C.; Badizadegan, K.; Oh, S.; Lue, N.; Dasari, R.R.; Feld, M.S. Tomographic phase microscopy. Nat. Methods 2007, 4, 717. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Shim, H.; Kim, K.; Park, H.; Jang, S.; Park, Y. Profiling individual human red blood cells using common-path diffraction optical tomography. Sci. Rep. 2014, 4, 6659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemper, B.; Vollmer, A.; von Bally, G.; Rommel, C.E.; Schnekenburger, J. Simplified approach for quantitative digital holographic phase contrast imaging of living cells. J. Biomed. Opt. 2011, 16, 026014. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jericho, M.H.; Meinertzhagen, I.A.; Kreuzer, H.J. Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. USA 2001, 98, 11301–11305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquet, P.; Rappaz, B.; Magistretti, P.J.; Cuche, E.; Emery, Y.; Colomb, T.; Depeursinge, C. Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 2005, 30, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Millet, L.; Mir, M.; Ding, H.; Unarunotai, S.; Rogers, J.; Gillette, M.U.; Popescu, G. Spatial light interference microscopy (SLIM). Opt. Express 2011, 19, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Zhou, R.; Goddard, L.L.; Popescu, G. Solving inverse scattering problems in biological samples by quantitative phase imaging. Laser Photonics Rev. 2016, 10, 13–39. [Google Scholar] [CrossRef]
- Zangle, T.A.; Teitell, M.A. Live-cell mass profiling: An emerging approach in quantitative biophysics. Nat. Methods 2014, 11, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Macias, V.; Tangella, K.; Melamed, J.; Dube, E.; Kong, M.X.; Kajdacsy-Balla, A.; Popescu, G. Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population. Sci. Rep. 2016, 6, 33818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.H.; Sridharan, S.; Macias, V.; Kajdacsy-Balla, A.; Melamed, J.; Do, M.N.; Popescu, G. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning. J. Biomed. Opt. 2017, 22, 036015. [Google Scholar] [CrossRef] [PubMed]
- Colomb, T.; Charrière, F.; Kühn, J.; Marquet, P.; Depeursinge, C. Advantages of digital holographic microscopy for real-time full field absolute phase imaging. In Proceedings of the Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XV, San Jose, CA, USA, 20 February 2008; Volume 6861, p. 686109. [Google Scholar] [CrossRef]
- Alm, K.; El-Schich, Z.; Miniotis, M.F.; Wingren, A.G.; Janicke, B.; Oredsson, S. Cells and holograms–holograms and digital holographic microscopy as a tool to study the morphology of living cells. In Holography-Basic Principles and Contemporary Applications; Mihaylova, E., Ed.; Intech: Vienna, Austria, 2013. [Google Scholar]
- Kemmler, M.; Fratz, M.; Giel, D.; Saum, N.; Brandenburg, A.; Hoffmann, C. Noninvasive time-dependent cytometry monitoring by digital holography. J. Biomed. Opt. 2007, 12, 064002. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Mustata, M.; Turek, J.; French, P.; Melloch, M.; Nolte, D. Holographic optical coherence imaging of tumor spheroids. Appl. Phys. Lett. 2003, 83, 575–577. [Google Scholar] [CrossRef]
- Carl, D.; Kemper, B.; Wernicke, G.; von Bally, G. Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 2004, 43, 6536–6544. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.; Baehrecke, E.; Blagosklonny, M.; El-Deiry, W.; Golstein, P.; Green, D. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009, 16, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Pavillon, N.; Kühn, J.; Moratal, C.; Jourdain, P.; Depeursinge, C.; Magistretti, P.J.; Marquet, P. Early cell death detection with digital holographic microscopy. PLoS ONE 2012, 7, e30912. [Google Scholar] [CrossRef] [PubMed]
- Khmaladze, A.; Matz, R.L.; Epstein, T.; Jasensky, J.; Banaszak Holl, M.M.; Chen, Z. Cell volume changes during apoptosis monitored in real time using digital holographic microscopy. J. Struct. Biol. 2012, 178, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Miniotis, M.F.; Mukwaya, A.; Wingren, A.G. Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells. PLoS ONE 2014, 9, e106546. [Google Scholar] [CrossRef]
- Marquet, P.; Depeursinge, C.; Magistretti, P.J. Review of quantitative phase-digital holographic microscopy: Promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 2014, 1, 020901. [Google Scholar] [CrossRef] [PubMed]
- Bettenworth, D.; Bokemeyer, A.; Poremba, C.; Ding, N.S.; Ketelhut, S.; Lenz, P.; Kemper, B. Quantitative phase microscopy for evaluation of intestinal inflammation and wound healing utilizing label-free biophysical markers. Histol. Histopathol. 2018, 33, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Petecchia, L.; Usai, C.; Vassalli, M.; Gavazzo, P. Biophysical characterization of nanostructured TiO2 as a good substrate for hBM-MSC adhesion, growth and differentiation. Exp. Cell Res. 2017, 358, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Kemper, B.; Bauwens, A.; Vollmer, A.; Ketelhut, S.; Langehanenberg, P.; Müthing, J.; Karch, H.; von Bally, G. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J. Biomed. Opt. 2010, 15, 036009. [Google Scholar] [CrossRef] [PubMed]
- Nolte, D.D.; An, R.; Turek, J.; Jeong, K. Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture. Biomed. Opt. Express 2012, 3, 2825–2841. [Google Scholar] [CrossRef] [PubMed]
- Nolte, D.D.; An, R.; Turek, J.; Jeong, K. Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening. JALA: J. Assoc. Lab. Autom. 2011, 16, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Moon, I.; Javidi, B. Automated red blood cells extraction from holographic images using fully convolutional neural networks. Biomed. Opt. Express 2017, 8, 4466–4479. [Google Scholar] [CrossRef] [PubMed]
- Go, T.; Byeon, H.; Lee, S.J. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning. Biosens. Bioelectron. 2018, 103, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.; Javidi, B.; Yi, F.; Boss, D.; Marquet, P. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. Opt. Express 2012, 20, 10295–10309. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chen, S.; Qin, J.; Liu, Y.; Huang, B.; Chen, H. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey. Contrast Med. Mol. Imaging 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Majeed, H.; Kandel, M.E.; Han, K.; Luo, Z.; Macias, V.; Tangella, K.V.; Balla, A.; Popescu, G. Breast cancer diagnosis using spatial light interference microscopy. J. Biomed. Opt. 2015, 20, 111210. [Google Scholar] [CrossRef] [PubMed]
- Pavillon, N.; Hobro, A.J.; Akira, S.; Smith, N.I. Noninvasive detection of macrophage activation with single-cell resolution through machine learning. Proc. Natl. Acad. Sci. USA 2018, 115, E2676–E2685. [Google Scholar] [CrossRef] [PubMed]
Reference | Cell Lines | Organism | Tissue | Agent | Investigated | Vessel Type | Technology Naming | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cellular Dry Mass/Proliferation | Cell Count | Single Cell Morphology | Cell Cycle | Cell Motility | Cell Lineage | |||||||
[7] | KHOS | Human | Bone | - | X | X | X | 6-well plate | Quantitative Phase Imaging | |||
[8] | U2OS | Human | Bone | - | X | Cultivation chamber | Spatial Light Interference Microscopy | |||||
[9] | SH-SY5Y | Human | Bone Marrow | Hypomagnetic, Field | X | X | X | T25 flask | Holographic Imaging | |||
[10] | U87 MG | Human | Brain | Fatty acids, Radiation | X | T25 Flask | Holographic Microscopy Imaging | |||||
[11] | U87 MG, U-251 MG, GBM1, GBM2 | Human | Brain | C-150 | X | T25 Flask | Holographic Microscopy Imaging | |||||
[12] | JIMT-1 | Human | Breast | DFMO, PG-11047 | X | T25 Flask | Digital Holography | |||||
[13] | JIMT-1, MCF-7 | Human | Breast | Salinomycin | X | X | X | X | Petri dish, T25 flask | Digital Holographic Microscopy | ||
[14] | L56Br-C1, MDA-MB-231 | Human | Breast | - | X | X | T25 Flask | Digital Holographic Microscopy | ||||
[15] | MCF-7 | Human | Breast | Estrogen | X | Glass Chamber Slide | Spatial Light Interference Microscopy | |||||
[15] | MCF-7 | Human | Breast | Estradiol, Antiestrogen | X | X | Chamber slide | Spatial Light Interference Microscopy | ||||
[16] | MCF-7, ZR-75-1, MDA-MB-231, SK-BR-3 | Human | Breast | - | X | X | Gel matrix | Phase Holographic Imaging | ||||
[17] | MDA-MB-231 | Human | Breast | Vimentin | X | unknown | - | |||||
[18] | MDA-MB-231, MDA-MB-468, MCF-7 | Human | Breast | - | X | unknown | Digital Holographic Microscopy | |||||
[19] | MDA-MB-231, MCF-7 | Human | Breast | - | X | Microfluidic channel | Digital Holographic Microscopy | |||||
[20] | MDA-MB-231, MCF-7, SKOV-3, SKOV-3-TR | Human | Breast, Ovary | - | X | Flow | Digital Holographic Microscopy | |||||
[21] | MCF-10A, PC-3, DU145 | Human | Breast, Prostate | - | X | T75 Flask | Digital Holography | |||||
[22] | JIMT-1, SK-MEL-5 | Human | Breast, Skin | - | X | X | 6-well plate | Digital Holographic Microscopy | ||||
[23] | HeLa | Human | Cervix | - | X | Petri dish | Spatial Light Interference Microscopy | |||||
[24] | HeLa | Human | Cervix | - | X | unknown | White Light Diffraction Phase Microscopy | |||||
[25] | HeLa | Human | Cervix | - | X | X | X | unknown | Wide-field Interferometric Phase Microscopy | |||
[26] | HeLa | Human | Cervix | - | X | X | X | Slide | Quantitative Phase Imaging | |||
[27] | HeLa | Human | Cervix | Doxorubicin | X | X | X | Glass Petri dish | Quantitative Phase Holographic Imaging | |||
[28] | HeLa | Human | Cervix | Glucose | X | X | Chamber slide | Fourier Phase Microscopy | ||||
[29] | HeLa | Human | Cervix | Polyalthia, Longifolia | X | T25 flask | Holographic Digital Microscopy | |||||
[30] | HeLa | Human | Cervix | Epigalloca-Techingallate | X | X | Perfusion slide | Digital Holographic Microscopy | ||||
[31] | Primary | Human | Cervix | - | X | Slide | Digital Holographic Microscopy | |||||
[32] | HeLa, MCF-7 | Human | Cervix, Breast | Cyclotrichium, Niveum | X | Perfusion slide | Holographic Imaging | |||||
[33] | HeLa, A2780-ADR, H69-AR | Human | Cervix, Ovary, Lung | C6 Ceramide, Doxorubicin | X | Glass dish | Phase Holographic Imaging Microscopy | |||||
[34] | DLD | Human | Colon | HAMLET | X | Tissue culture flask | Holographic Imaging | |||||
[35] | HT29 | Human | Colon | TNFa, smac Mimetic, Z-VAD | X | Slide | Quantitative Phase Microscopy | |||||
[36] | SW-480 | Human | Colon | - | X | Flow | Quantitative Phase Imaging | |||||
[37] | MVA12, MVA41C | Human | Connective | - | X | unknown | Holographic Time-lapse Imaging | |||||
[38] | HT1080, MCF-7 | Human | Connective, Breast | Doxorubicin | X | X | Glass Petri dish | Time-lapse Holographic Imaging Cytometry | ||||
[39] | A549 | Human | Lung | HAMLET | X | Perfusion slide | Holographic Imaging | |||||
[40] | A549 | Human | Lung | IL-6 | X | Cell culture dish | Digital Holographic Microscopy | |||||
[41] | A549 | Human | Lung | - | X | Glass dish | Phase Correlation Imaging | |||||
[42] | A549, H1975 | Human | Lung | Curcuminoids | X | T25 flask | Holographic Microscopy Imaging | |||||
[43] | A549, Jurkat | Human | Lung, Peripheral Blood | HAMLET | X | Perfusion slide | Holographic Imaging | |||||
[44] | SKOV3-TR, HeyA8-MDR | Human | Ovary | Pacitaxel | X | T25 Flask | Holographic Imaging Cytometry | |||||
[45] | PaTu8988S, PaTu8988T | Human | Pancreas | E-cadherin | X | Tissue Culture Plates | Digital Holographic Microscopy | |||||
[46] | PaTu8988S, PaTu8988T | Human | Pancreas | - | X | Petri dish | Digital Holographic Microscopy | |||||
[47] | PANC-1 | Human | Pancreas/Duct | Oxaliplatin | X | Glass dish | Digital Holographic Microscopy | |||||
[48] | Jurkat, U2932 | Human | Peripheral, Blood | Etoposide | X | Slide | Digital Holographic Microscopy | |||||
[49] | SACR2, FaDu | Human | Pharynx | - | X | X | Perfusion slide | Coherence Controlled Holographic Microscopy | ||||
[50] | DU145 | Human | Prostate | Etoposide | X | X | T25 Flask | Holographic Microscopy | ||||
[51] | DU145 | Human | Prostate | Etoposide | X | X | 6-well plate | Digital Holographic Microscopy | ||||
[52] | PC-3 | Human | Prostate | ISA-2011B | X | unknown | Live Cell Imaging | |||||
[53] | A2058, HT168-M1 | Human | Skin | Hydroxy-Anthraquinones | X | X | Petri dish | Holographic Microscopy | ||||
[54] | Hs-895, WM-115, WM-266-4, SW-480, SW-620 | Human | Skin, Colon | - | X | Adhesive chamber | Quantitative Phase Microscopy | |||||
[55] | A549, HRTEC | Human | Lung, Kidney | HAMLET | X | Perfusion slide | Phase Holographic Imaging | |||||
[56] | RKO, L1210 | Human, Mouse | Colon, Skin | - | X | Slide | Synthetic phase microscopy | |||||
[57] | A375, NuMuMg | Human, Mouse | Skin, Breast | Various | X | X | X | X | 6-well plate | Digital Holographic Imaging | ||
[58] | G3S2, A337/311RP | Human, rat | Breast, Lung | Starvation | X | Slide | Digital Holographic Microscopy | |||||
[59] | Primary | Mouse | Lung | - | X | X | 6-well plate | Phase Holographic Microscopy | ||||
[60] | B16F1, B16F10 | Mouse | Skin | - | X | X | Microscope slide | Digital Holographic Microscopy | ||||
[61] | B16F10 | Mouse | Skin | Electro-Chemotherapy | X | Perfusion slide | Digital Holographic Microscopy | |||||
[62] | M229P, M229R5, M238P, M238R1, M249P, M249R4 | Human | Melanoma | Vemurafenib | X | X | 24-well glass-bottom plate | High-speed live cell, interferometry | ||||
[63] | RM-82, CADO-ES-1, VH-64, STA-ET-1 | Human | Ewing sarcoma | Birc5 knockdown | X | X | X | Slide | Digital Holographic Microscopy | |||
[64] | Red blood cells, HT1080 | Human | Fibrosarcoma | - | X | Digital Holographic Microscopy | ||||||
[65] | MDA-MB-231, MCF-7 | Human | Breast | VE-cadherin | X | X | X | ibidi μDish Petri dish | Digital Holographic Microscopy | |||
[66] | HeLa | Human | Cervix | - | X | Slide | Multimodal Holographic microscopy |
Number of Cells | Confluence (%) | Av. Cell Area (μm2) | Av. Cell Optical Thickness Avg (μm2) | Av. Cell Optical Volume (μm3) | |
---|---|---|---|---|---|
Control | 226 ± 81 | 10.9 ± 3.8 | 143.4 ± 7.0 | 6.5 ± 0.4 | 1006.2 ± 121.1 |
Etoposide | 114 ± 17 | 4.4 ± 0.5 | 115.0 ± 8.4 | 4.9 ± 0.2 | 584.0 ± 48.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Schich, Z.; Leida Mölder, A.; Gjörloff Wingren, A. Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. Appl. Sci. 2018, 8, 1027. https://doi.org/10.3390/app8071027
El-Schich Z, Leida Mölder A, Gjörloff Wingren A. Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. Applied Sciences. 2018; 8(7):1027. https://doi.org/10.3390/app8071027
Chicago/Turabian StyleEl-Schich, Zahra, Anna Leida Mölder, and Anette Gjörloff Wingren. 2018. "Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy" Applied Sciences 8, no. 7: 1027. https://doi.org/10.3390/app8071027
APA StyleEl-Schich, Z., Leida Mölder, A., & Gjörloff Wingren, A. (2018). Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. Applied Sciences, 8(7), 1027. https://doi.org/10.3390/app8071027