Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Wideband Polarization-Insensitive Waveguides
3.2. Wideband Polarization-Insensitive MMI
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sieger, M.; Mizaikoff, B. Toward on-chip mid-infrared sensors. Anal. Chem. 2016, 88, 5562–5573. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.C.; Rich, P.; Foreman, L.; Smith, J.; Yu, M.S.; Tanna, A.; Dibbur, V.; Unwin, R.; Tam, F.W. Label Free Detection of Sensitive Mid-Infrared Biomarkers of Glomerulonemphritis in Urin using Fourier Transform Spectroscopy. Sci. Rep. 2017, 7, 4601. [Google Scholar] [CrossRef] [PubMed]
- Etezadi, D.; Warner, J.B., IV; Ruggeri, F.S.; Dietler, G.; Lashuel, H.A.; Altug, H. Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl. 2017, 6, e17029. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Wägli, P.; Paeder, V.; Homsy, A.; Hvozdara, L.; van der Wal, P.; Di Francesco, J.; de Rooji, N.F.; Herzig, H.P. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip 2012, 12, 3020–3023. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Willer, U.; Lewicki, R.; Pohlkötter, A.; Kosterev, A.; Kosynkin, D.; Tittel, F.K.; Schade, W. A Mid-infrared QEPAS sensor device for TATP detection. J. Phys. Conf. Ser. 2009, 157, 012002. [Google Scholar] [CrossRef] [Green Version]
- Herbst, J.; Hildenbrand, J.; Wöllenstein, J.; Lambrecht, A. TATP and TNT detection by mid-infrared transmission spectroscopy. In Infrared Technology and Applications XXXV; International Society for Optics and Photonics: Orlando, FL, USA, 2009; Volume 7298, p. 72983W. [Google Scholar] [CrossRef]
- Kornaszewski, Ł.; Gayraud, N.; Stone, J.M.; MacPherson, W.N.; George, A.K.; Knight, J.C.; Hand, D.P.; Reid, D.T. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator. Opt. Express 2007, 15, 11219–11224. [Google Scholar] [CrossRef] [PubMed]
- Diener, R.; Tepper, J.; Labadie, L.; Pertsch, T.; Nolte, S.; Minardi, S. Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry. Opt. Express 2017, 25, 19262–19274. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Jovanovic, N.; Sharp, A.; Ireland, M.; Lawrence, J.; Withford, M.J. Low loss mid-infrared ZBLAN waveguides for future astronomical applications. Opt. Express 2015, 23, 7946–7956. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Van, H.; Baranov, A.N.; Loghmari, Z.; Cerutti, L.; Rodriguez, J.B.; Tournet, J.; Narcy, G.; Boissier, G.; Patriarche, G.; Bahriz, M.; et al. Quantum cascade lasers grown on silicon. Sci. Rep. 2018, 8, 7206. [Google Scholar] [CrossRef] [PubMed]
- Bahriz, M.; Lollia, G.; Baranov, A.N.; Teissier, R. High temperature operation of far infrared (λ ≈ 20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide. Opt. Express 2015, 23, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Faist, J.; Capasso, F.; Sirtori, C.; Sivco, D.L.; Baillargeon, J.N.; Hutchinson, A.L.; Chu, S.-N.; Cho, A.Y. High power mid-infrared (λ~5 μm) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 1996, 68, 3680–3682. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Velasco, A.V.; Khokhar, A.Z.; Delâge, A.; Cheben, P.; Mashanovich, G.Z. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip. IEEE Photonics Technol. Lett. 2016, 28, 528–531. [Google Scholar] [CrossRef]
- Vasiliev, A.; Muneeb, M.; Allaert, J.; Van Campenhout, J.; Baets, R.; Roelkens, G. Integrated Silicon-on-Insulator Spectrometer With Single Pixel Readout for Mid-Infrared Spectroscopy. IEEE J. Sel. Top. Quantum 2018, 24. [Google Scholar] [CrossRef]
- Chiles, J.; Fathpour, S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica 2014, 1, 350–355. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Stankovic, S.; Mitchell, C.J.; Khokhar, A.Z.; Reynolds, S.A.; Thomson, D.J.; Gardes, F.Y.; Littlejohns, C.G.; Reed, G.T.; Mashanovich, G.Z. Mid-infrared thermo-optic modulators in SoI. IEEE Photonics Technol. Lett. 2014, 26, 1352–1355. [Google Scholar] [CrossRef]
- Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.C.; Symonyte, I.; Vizbaras, K.; Baets, R.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors 2017, 17, 1788. [Google Scholar] [CrossRef] [PubMed]
- Roux, S.; Cerutti, L.; Tournie, E.; Gérard, B.; Patriarche, G.; Grisard, A.; Lallier, E. Low-loss orientation-patterned GaSb waveguides for mid-infrared parametric conversion. Opt. Mater. Express 2017, 7, 3011–3016. [Google Scholar] [CrossRef]
- Gilles, C.; Orbe, L.J.; Carpintero, G.; Maisons, G.; Carras, M. Mid-infrared wavelength multiplexer in InGaAs/InP waveguides using a Rowland circle grating. Opt. Express 2015, 23, 20288–20296. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Choi, D.Y.; Yu, Y.; Gai, X.; Yang, Z.; Debbarma, S.; Madden, S.; Luther-Davies, B. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Express 2013, 21, 29927–29937. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D.T.H. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 2016, 108, 141106. [Google Scholar] [CrossRef]
- Gutierrez-Arroyo, A.; Baudet, E.; Bodiou, L.; Lemaitre, J.; Hardy, I.; Faijan, F.; Bureau, B.; Nazabal, V.; Charrier, J. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Opt. Express 2016, 24, 23109–23117. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, L.; Zou, Y.; Danto, S.; Musgraves, J.D.; Richardson, K.; Kozacik, S.; Murakowski, M.; Prather, D.; Lin, P.T.; et al. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Opt. Lett. 2013, 38, 1470–1472. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Okawachi, Y.; Griffith, A.G.; Picqué, N.; Lipson, M.; Gaeta, A.L. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 2018, 9, 1869. [Google Scholar] [CrossRef] [PubMed]
- Mashanovich, G.Z.; Milošević, M.M.; Nedeljkovic, M.; Owens, N.; Xiong, B.; Teo, E.J.; Hu, Y. Low loss silicon waveguides for the mid-infrared. Opt. Express 2011, 19, 7112–7119. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Chakravarty, S.; Chen, R.T. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities. Appl. Phys. Lett. 2015, 107, 081109. [Google Scholar] [CrossRef]
- Singh, N.; Hudson, D.D.; Eggleton, B.J. Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. Opt. Express 2015, 23, 17345–17354. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.T.; Singh, V.; Hu, J.; Richardson, K.; Musgraves, J.D.; Luzinov, I.; Hensley, J.; Kimerling, L.C.; Agarwal, A. Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides. Lab. Chip 2013, 13, 2161–2166. [Google Scholar] [CrossRef] [PubMed]
- Penadés, J.S.; Ortega-Moñux, A.; Nedeljkovic, M.; Wangüemert-Pérez, J.G.; Halir, R.; Khokhar, A.Z.; Alonso-Ramos, C.; Qu, Z.; Molina-Fernández, I.; Cheben, P.; et al. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. Opt. Express 2016, 24, 22908–22916. [Google Scholar] [CrossRef] [PubMed]
- Penadés, J.S.; Sánchez-Postigo, A.; Nedeljkovic, M.; Ortega-Moñux, A.; Wangüemert-Pérez, J.G.; Xu, Y.; Halir, R.; Qu, Z.; Khokhar, A.Z.; Osman, A.; et al. Suspended silicon waveguides for long-wave infrared wavelengths. Opt. Lett. 2018, 43, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, M.; Penades, J.S.; Mittal, V.; Murugan, G.S.; Khokhar, A.Z.; Littlejohns, C.; Carpenter, L.G.; Gawith, C.B.; Wilkinson, J.S.; Mashanovich, G.Z. Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm. Opt. Express 2017, 25, 27431–27441. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Muneeb, M.; Pathak, S.; Shimura, Y.; Van Campenhout, J.; Loo, R.; Roelkens, G. Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers. IEEE Photonics Technol. Lett. 2013, 25, 1805–1808. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.M.; Vakarin, V.; Gilles, C.; Frigerio, J.; Ballabio, A.; Chaisakul, P.; Le Roux, X.; Alonso-Ramos, C.; Maisons, G.; Vivien, L.; et al. Low-loss Ge-rich Si 0.2 Ge 0.8 waveguides for mid-infrared photonics. Opt. Lett. 2017, 42, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.M.; Vakarin, V.; Frigerio, J.; Chaisakul, P.; Chrastina, D.; Le Roux, X.; Ballabio, A.; Vivien, L.; Isella, G.; Marris-Morini, D. Ge-rich graded-index Si 1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics. Opt. Express 2017, 25, 6561–6567. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.M.; Liu, Q.; Vakarin, V.; Frigerio, J.; Ballabio, A.; Le Roux, X.; Bouville, D.; Vivien, L.; Isella, G.; Marris-Morini, D. Graded SiGe waveguides with broadband low-loss propagation in the mid infrared. Opt. Express 2018, 26, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Vakarin, V.; Ramírez, J.M.; Frigerio, J.; Ballabio, A.; Le Roux, X.; Liu, Q.; Bouville, D.; Vivien, L.; Isella, G.; Marris-Morini, D. Ultra-wideband Ge-rich silicon germanium integrated Mach–Zehnder interferometer for mid-infrared spectroscopy. Opt. Lett. 2017, 42, 3482–3485. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ramirez, J.M.; Vakarin, V.; Le Roux, X.; Ballabio, A.; Frigerio, J.; Chrastina, D.; Isella, G.; Bouville, D.; Vivien, L.; et al. Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides. Opt. Mater. Express 2018, 8, 1305–1312. [Google Scholar] [CrossRef]
- Sinobad, M.; Monat, C.; Luther-Davies, B.; Ma, P.; Madden, S.; Moss, D.J.; Mitchell, A.; Allioux, D.; Orobtchouk, R.; Boutami, S.; et al. Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides. Optica 2018, 5, 360–366. [Google Scholar] [CrossRef]
- Carletti, L.; Sinobad, M.; Ma, P.; Yu, Y.; Allioux, D.; Orobtchouk, R.; Brun, M.; Ortiz, S.; Labeye, P.; Nicoletti, S.; et al. Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses. Opt. Express 2015, 23, 32202–32214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serna, S.; Vakarin, V.; Ramirez, J.M.; Frigerio, J.; Ballabio, A.; Roux, X.; Vivien, L.; Isella, G.; Cassan, E.; Dubreuil, N.; et al. Nonlinear Properties of Ge-rich Si 1− x Ge x Materials with Different Ge Concentrations. Sci. Rep. 2017, 7, 14692. [Google Scholar] [CrossRef] [PubMed]
- Soibel, A.; Wright, M.W.; Farr, W.; Keo, S.; Hill, C.; Yang, R.Q.; Liu, H.C. High-speed operation of interband cascade lasers. Electron. Lett. 2009, 45, 264–265. [Google Scholar] [CrossRef] [Green Version]
- Hinkley, E.D. Laser monitoring of the atmosphere. In Topics in Applied Physics; Springer: Berlin, Germany; New York, NY, USA, 1976; Volume 14. [Google Scholar]
- Zhang, J.; Ding, S.; Zhai, H.; Dang, A. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communications. Opt. Express 2014, 22, 32482–32488. [Google Scholar] [CrossRef] [PubMed]
- James, D.F. Change of polarization of light beams on propagation in free space. J. Opt. Soc. Am. A 1994, 11, 1641–1643. [Google Scholar] [CrossRef]
- Pang, X.; Ozolins, O.; Schatz, R.; Storck, J.; Udalcovs, A.; Navarro, J.R.; Kakkar, A.; Maisons, G.; Carras, M.; Jacobsen, G.; et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature. Opt. Lett. 2017, 42, 3646–3649. [Google Scholar] [CrossRef] [PubMed]
- Lumerical Inc. Available online: http://www.lumerical.com/tcad-products/mode/ (accessed on 28 May 2018).
- Li, H.H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561–658. [Google Scholar] [CrossRef]
- Isella, G.; Chrastina, D.; Rössner, B.; Hackbarth, T.; Herzog, H.J.; König, U.; Von Känel, H. Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid-State Electron. 2004, 48, 1317–1323. [Google Scholar] [CrossRef]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495. [Google Scholar] [CrossRef]
- Thomson, D.J.; Hu, Y.; Reed, G.T.; Fedeli, J.M. Low loss MMI couplers for high performance MZI modulators. IEEE Photonics Technol. Lett. 2010, 22, 1485–1487. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef]
- Bucio, T.D.; Khokhar, A.Z.; Mashanovich, G.Z.; Gardes, F.Y. Athermal silicon nitride angled MMI wavelength division (de) multiplexers for the near-infrared. Opt. Express 2017, 25, 27310–27320. [Google Scholar] [CrossRef] [PubMed]
MIDIR 1 Transparency Window | Component | Dimensions | Number of Channels |
---|---|---|---|
MWIR 2 | waveguide | 3.4 µm width × 1.9 µm etching depth | 360 |
LWIR 3 | waveguide | 5.4 µm width × 3.1 µm etching depth | 428 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakarin, V.; Ramírez, J.M.; Frigerio, J.; Liu, Q.; Ballabio, A.; Le Roux, X.; Alonso-Ramos, C.; Isella, G.; Cheben, P.; N. Ye, W.; et al. Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications. Appl. Sci. 2018, 8, 1154. https://doi.org/10.3390/app8071154
Vakarin V, Ramírez JM, Frigerio J, Liu Q, Ballabio A, Le Roux X, Alonso-Ramos C, Isella G, Cheben P, N. Ye W, et al. Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications. Applied Sciences. 2018; 8(7):1154. https://doi.org/10.3390/app8071154
Chicago/Turabian StyleVakarin, Vladyslav, Joan Manel Ramírez, Jacopo Frigerio, Qiankun Liu, Andrea Ballabio, Xavier Le Roux, Carlos Alonso-Ramos, Giovanni Isella, Pavel Cheben, Winnie N. Ye, and et al. 2018. "Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications" Applied Sciences 8, no. 7: 1154. https://doi.org/10.3390/app8071154
APA StyleVakarin, V., Ramírez, J. M., Frigerio, J., Liu, Q., Ballabio, A., Le Roux, X., Alonso-Ramos, C., Isella, G., Cheben, P., N. Ye, W., Vivien, L., & Marris-Morini, D. (2018). Wideband Ge-Rich SiGe Polarization-Insensitive Waveguides for Mid-Infrared Free-Space Communications. Applied Sciences, 8(7), 1154. https://doi.org/10.3390/app8071154