Region Adjacency Graph Approach for Acral Melanocytic Lesion Segmentation
Abstract
:1. Introduction
Related Works
2. Methods
2.1. Overview
2.2. Image Pre-Processing
2.3. Oversegmentation
2.4. Region Adjacency Graph
2.5. Hierarchical Merging
3. Results
3.1. Image Database
3.2. Statistical Analysis
3.3. Comparison with Other Segmentation Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Garbe, C.; Leiter, U. Melanoma epidemiology and trends. Clin. Dermatol. 2009, 27, 3–9. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19095149 (accessed on 10 March 2018). [CrossRef] [PubMed]
- Argenziano, G.; Soyer, P.; Giorgio, V.D.; Piccolo, D.; Carli, P.; Delfino, M.; Ferrari, A.; Hofmann-Wellenhof, R.; Massi, D.; Mazzocchetti, G.; et al. Interactive Atlas of Dermoscopy; Book and CD/Web Resource; Edra Medical Publishing and New Media: Milan, Italy, 2000. [Google Scholar]
- Saida, T.; Oguchi, S.; Miyazaki, A. Dermoscopy for acral pigmented skin lesions. Clin. Dermatol. 2002, 20, 279–285. [Google Scholar] [CrossRef]
- Saida, T.; Oguchi, S.; Ishihara, Y. In vivo observation of magnified features of pigmented lesions on volar skin using video macroscope. Usefulness of epiluminescence techniques in clinical diagnosis. Arch. Dermatol. 1995, 131, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Saida, T.; Miyazaki, A.; Oguchi, S.; Ishihara, Y.; Yamazaki, Y.; Murase, S.; Yoshikawa, S.; Tsuchida, T.; Kawabata, Y.; Tamaki, K. Significance of dermoscopic patterns in detecting malignant melanoma on acral volar skin: Results of a multicenter study in Japan. Arch. Dermatol. 2004, 140, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Argenziano, G.; Soyer, H.; Chimenti, S.; Talamini, R.; Corona, R.; Sera, F.; Binder, M.; Cerroni, L.; Rosa, G.D.; Ferrara, G.; et al. Dermoscopy of pigmented skin lesions: Results of a consensus meeting via the Internet. J. Am. Acad. Dermatol. 2003, 48, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Jaworek-Korjakowska, J.; Kłeczek, P. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence. BioMed Res. Int. 2016, 2016, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Oh, B.; Hahm, S.; Chung, K.Y.; Lee, B.U. Ridge and furrow pattern classification for acral lentiginous melanoma using dermoscopic images. Biomed. Signal Process. Control 2017, 32, 90–96. [Google Scholar] [CrossRef]
- Iyatomi, H.; Oka, H.; Celebi, M.; Hashimoto, M.; Hagiwara, M.; Tanaka, M.; Ogawa, K. An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput. Med. Imaging Graph. 2008, 32, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Celebi, M.E.; Schaefer, G.; Iyatomi, H.; Stoecker, W.V. Lesion Border Detection in Dermoscopy Images. Comput. Med. Imaging Graph. 2009, 33, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Celebi, M.E.; Wen, Q.; Iyatomi, H.; Shimizu, K.; Zhou, H.; Schaefer, G. A State-of-the-Art Survey on Lesion Border Detection in Dermoscopy Images. In Dermoscopy Image Analysis, 1st ed.; Celebi, M.E., Mendonca, T., Marques, J.S., Eds.; CRC Press: Boca Raton, FL, USA, 2015; Chapter 4; pp. 97–129. [Google Scholar]
- Garnavi, R.; Aldeen, M.; Celebi, M.E.; Varigos, G.; Finch, S. Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 2011, 35, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Emre Celebi, M.; Quan, W.; Sae, H.; Hitoshi, I.; Gerald, S. Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods. Skin Res. Technol. 2012, 19, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Peruch, F.; Bogo, F.; Bonazza, M.; Cappelleri, V.M.; Peserico, E. Simpler, Faster, More Accurate Melanocytic Lesion Segmentation Through MEDS. IEEE Trans. Biomed. Eng. 2014, 61, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Celebi, E.; Kingravi, H.A.; Iyatomi, H.; Aslandogan, Y.A.; Stoecker, W.V.; Moss, R.H.; Menzies, S.W. Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 2008, 14, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silveira, M.; Nascimento, J.C.; Marques, J.S.; Marcal, A.R.S.; Mendonca, T.; Yamauchi, S.; Maeda, J.; Rozeira, J. Comparison of Segmentation Methods for Melanoma Diagnosis in Dermoscopy Images. IEEE J. Sel. Top. Signal Process. 2009, 3, 35–45. [Google Scholar] [CrossRef]
- Hitoshi, I.; Hiroshi, O.; Xiaohe, C. Unsupervised border detection in dermoscopy images. Skin Res. Technol. 2007, 13, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Erkol, B.; Moss, R.H.; Stanley, R.; Stoecker, W.V.; Hvatum, E. Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 2005, 11, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Tavares, J.M.R. A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J. Biomed. Health Inform. 2016, 20, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Kim, J.; Ahn, E.; Kumar, A.; Fulham, M.; Feng, D. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks. IEEE Trans. Biomed. Eng. 2017, 64, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Bozorgtabar, B.; Sedai, S.; Roy, P.K.; Garnavi, R. Skin lesion segmentation using deep convolution networks guided by local unsupervised learning. IBM J. Res. Dev. 2017, 61, 1–8. [Google Scholar] [CrossRef]
- Guo, Y.; Ashour, A.S.; Smarandache, F. A Novel Skin Lesion Detection Approach Using Neutrosophic Clustering and Adaptive Region Growing in Dermoscopy Images. Symmetry 2018, 10, 119. [Google Scholar] [CrossRef]
- Ashour, A.S.; Guo, Y.; Kucukkulahli, E.; Erdogmus, P.; Polat, K. A hybrid dermoscopy images segmentation approach based on neutrosophic clustering and histogram estimation. Appl. Soft Comput. 2018, 69, 426–434. [Google Scholar] [CrossRef]
- Ashour, A.S.; Refaat Hawas, A.; Guo, Y.; Wahba, M. A novel optimized neutrosophic k-means using genetic algorithm for skin lesion detection in dermoscopy images. Signal Image Video Process. 2018. [Google Scholar] [CrossRef]
- Iyatomi, H.; Oka, H.; Celebi, M.E.; Ogawa, K.; Argenziano, G.; Soyer, H.P.; Koga, H.; Saida, T.; Ohara, K.; Tanaka, M. Computer-Based Classification of Dermoscopy Images of Melanocytic Lesions on Acral Volar Skin. J. Investig. Dermatol. 2008, 128, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Q.; Celebi, M.E.; Serrano, C.; Garcia, I.F.; Ma, G. Pattern classification of dermoscopy images: A perceptually uniform model. Pattern Recognit. 2013, 46, 86–97. [Google Scholar] [CrossRef]
- Tremeau, A.; Colantoni, P. Regions Adjacency Graph Applied To Color Image Segmentation. IEEE Trans. Image Process. 2000, 9, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Korting, T.; Fonseca, L.; Dutra, L.; Silva, F. A New Graph-Based Approach for Urban Image Segmentation. In Proceedings of the 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Bory, Czech Republic, 4–7 February 2008. [Google Scholar]
- Nguyen, B.P.; Tay, W.L.; Chui, C.K.; Ong, S.H. A clustering-based system to automate transfer function design for medical image visualization. Vis. Comput. 2012, 28, 181–191. [Google Scholar] [CrossRef]
- Cai, L.; Tay, W.L.; Nguyen, B.P.; Chui, C.K.; Ong, S.H. Automatic transfer function design for medical visualization using visibility distributions and projective color mapping. Comput. Med. Imaging Graph. 2013, 37, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Nguyen, B.P.; Chui, C.K.; Ong, S.H. Automated brain tumor segmentation using kernel dictionary learning and superpixel-level features. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 002547–002552. [Google Scholar] [CrossRef]
- Chen, X.; Nguyen, B.P.; Chui, C.; Ong, S. Reworking Multilabel Brain Tumor Segmentation: An Automated Framework Using Structured Kernel Sparse Representation. IEEE Syst. Man Cybern. Mag. 2017, 3, 18–22. [Google Scholar] [CrossRef]
- Chen, X.; Nguyen, B.P.; Chui, C.K.; Ong, S.H. An Automated Framework for Multi-label Brain Tumor Segmentation based on Kernel Sparse Representation. IEEE Syst. Man Cybern. Mag. 2017, 14, 25–43. [Google Scholar]
- Nguyen, B.P.; Heemskerk, H.; So, P.T.C.; Tucker-Kellogg, L. Superpixel-based segmentation of muscle fibers in multi-channel microscopy. BMC Syst. Biol. 2016, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Malik, J. Learning a classification model for segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 1. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eads, D. Hcluster: Hierarchical Clustering for SciPy. 2008. Available online: www.scipy-cluster.googlecode.com (accessed on 10 March 2018).
- Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar] [CrossRef]
- Sørensen, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species and Its Application to Analyses of the Vegetation on Danish Commons. Kongelige Danske Videnskabernes Selskab 1948, 5, 1–34. [Google Scholar]
- Jaworek-Korjakowska, J. Computer-aided diagnosis of micro-malignant melanoma lesions applying support vector machines. BioMed Res. Int. 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wighton, P.; Sadeghi, M.; Lee, T.K.; Atkins, M.S. A Fully Automatic Random Walker Segmentation for Skin Lesions in a Supervised Setting. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009; Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1108–1115. [Google Scholar]
- Zortea, M.; Skrovseth, S.O.; Schopf, T.R.; Kirchesch, H.M.; Godtliebsen, F. Automatic Segmentation of Dermoscopic Images by Iterative Classification. Int. J. Biomed. Imaging 2011, 2011, 972648. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Trans. Med. Imaging 2017, 36, 994–1004. [Google Scholar] [CrossRef] [PubMed]
DSC | ACC | PRC | SE | SP | |
---|---|---|---|---|---|
RAG | 0.85 | 0.91 | 0.89 | 0.93 | 0.89 |
RG | 0.81 | 0.83 | 0.85 | 0.87 | 0.88 |
Otsu | 0.69 | 0.72 | 0.79 | 0.81 | 0.76 |
ACM | 0.76 | 0.79 | 0.72 | 0.67 | 0.81 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworek-Korjakowska, J.; Kleczek, P. Region Adjacency Graph Approach for Acral Melanocytic Lesion Segmentation. Appl. Sci. 2018, 8, 1430. https://doi.org/10.3390/app8091430
Jaworek-Korjakowska J, Kleczek P. Region Adjacency Graph Approach for Acral Melanocytic Lesion Segmentation. Applied Sciences. 2018; 8(9):1430. https://doi.org/10.3390/app8091430
Chicago/Turabian StyleJaworek-Korjakowska, Joanna, and Pawel Kleczek. 2018. "Region Adjacency Graph Approach for Acral Melanocytic Lesion Segmentation" Applied Sciences 8, no. 9: 1430. https://doi.org/10.3390/app8091430
APA StyleJaworek-Korjakowska, J., & Kleczek, P. (2018). Region Adjacency Graph Approach for Acral Melanocytic Lesion Segmentation. Applied Sciences, 8(9), 1430. https://doi.org/10.3390/app8091430