Real-Time Vision through Haze Based on Polarization Imaging
Abstract
:1. Introduction
2. Physical Model for Polarization Image
3. Real-Time Optical Sensing and Detection System
3.1. Polarization Image Acquisition Method Based on Stokes Vectors
3.2. Design of Real-Time Optical Sensing and Detection System
4. Target Enhancement Algorithms Based on Polarization Information
4.1. Polarization Image Registration Algorithm Based on SURF
4.2. CLAHE Image Enhancement Algorithm Based on Bilinear Interpolation
5. Results and Discussion
Testing Environment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, C.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Wang, Z. Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China. Appl. Opt. 2008, 47, 4945–4951. [Google Scholar] [CrossRef]
- Edner, H.; Ragnarson, P.; Spännare, S.; Svanberg, S. Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring. Appl. Opt. 1993, 32, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Lv, Z.; Lou, X.; Zhang, Y.; Zhang, Z. Nitrogen dioxide monitoring using a blue LED. Appl. Opt. 2008, 47, 5337–5340. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Cai, Z.X.; Xie, B.; Tang, J. Review and prospect of image dehazing techniques. J. Comput. Appl. 2010, 30, 2417–2421. [Google Scholar] [CrossRef]
- Huang, B.; Liu, T.; Han, J.; Hu, H. Polarimetric target detection under uneven illumination. Opt. Express 2015, 23, 23603–23612. [Google Scholar] [CrossRef]
- Chen, C.W.; Fang, S.; Huo, X.; Xia, X.S. Image dehazing using polarization effects of objects and airlight. Opt. Express 2014, 22, 19523–19537. [Google Scholar] [CrossRef]
- Liu, F.; Cao, L.; Shao, X.; Han, P.; Bin, X. Polarimetric dehazing utilizing spatial frequency segregation of images. Appl. Opt. 2015, 54, 8116–8122. [Google Scholar] [CrossRef]
- Han, P.; Liu, F.; Yang, K.; Ma, J.; Li, J.; Shao, X. Active underwater descattering and image recovery. Appl. Opt. 2017, 56, 6631–6638. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Shao, X.; Gao, Y.; Xiangli, B.; Han, P.; Li, G. Polarization characteristics of objects in long-wave infrared range. JOSA A 2016, 33, 237–243. [Google Scholar] [CrossRef]
- Sadjadi, F.A. Invariants of polarization transformations. Appl. Opt. 2007, 46, 2914–2921. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, X.; Cui, N.; Engheta, N.; van der Spiegel, J. Bioinspired focal-plane polarization image sensor design: From application to implementation. Proc. IEEE 2014, 102, 1435–1449. [Google Scholar] [CrossRef]
- Zhao, X.; Boussaid, F.; Bermak, A.; Chigrinov, V.G. High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry. Opt. Express 2011, 19, 5565–5573. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Bello, D.S.S.; van Hoof, C.; Theuwissen, A.J. Biologically inspired CMOS image sensor for fast motion and polarization detection. IEEE Sens. J. 2013, 13, 1065–1073. [Google Scholar] [CrossRef]
- Garcia, M.; Edmiston, C.; Marinov, R.; Vail, A.; Gruev, V. Bio-inspired color-polarization imager for real-time in situ imaging. Optica 2017, 4, 1263–1271. [Google Scholar] [CrossRef]
- Maruyama, Y.; Terada, T.; Yamazaki, T.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y. 3.2-MP Back-Illuminated Polarization Image Sensor with Four-Directional Air-Gap Wire Grid and 2.5-μm Pixels. IEEE Trans. Electron Devices 2018, 65, 2544–2551. [Google Scholar] [CrossRef]
- Garcia, M.; Davis, T.; Blair, S.; Cui, N.; Gruev, V. Bioinspired polarization imager with high dynamic range. Optica 2018, 5, 1240–1246. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant key-points. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Muja, M.; Lowe, D.G. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2227–2240. [Google Scholar] [CrossRef]
- Liang, J.; Ren, L.; Qu, E.; Hu, B.; Wang, Y. Method for enhancing visibility of hazy images based on polarimetric imaging. Photonics Res. 2014, 2, 38–44. [Google Scholar] [CrossRef]
- Shwartz, S.; Namer, E.; Schechner, Y.Y. Blind haze separation. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1984–1991. [Google Scholar] [CrossRef]
- Nishino, K.; Kratz, L.; Lombardi, S. Bayesian defogging. Int. J. Comput. Vis. 2012, 98, 263–278. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C. Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 2013, 22, 3271–3482. [Google Scholar] [CrossRef]
- Pust, N.J.; Shaw, J.A. Wavelength dependence of the degree of polarization in cloud-free skies: Simulations of real environments. Opt. Express 2012, 20, 15559–15568. [Google Scholar] [CrossRef] [PubMed]
- Schechner, Y.Y.; Averbuch, Y. Regularized image recovery in scattering media. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Polarization-based vision through haze. Appl. Opt. 2003, 42, 511–525. [Google Scholar] [CrossRef] [PubMed]
Metrics | Mean Gradient | Edge Strength | Contrast | |
---|---|---|---|---|
Image | ||||
Figure 6g | Total light intensity image | 0.0049 | 0.0523 | 1.3455 |
Result by the conventional algorithm | 0.0084 | 0.0897 | 5.0434 | |
Result by the proposed algorithm | 0.0233 | 0.2443 | 17.5323 | |
Figure 8a | Total light intensity image | 0.0066 | 0.07 | 1.9452 |
Result by the conventional algorithm | 0.0095 | 0.101 | 5.3448 | |
Result by the proposed algorithm | 0.0245 | 0.2575 | 22.656 | |
Figure 8d | Total light intensity image | 0.0048 | 0.0505 | 0.9295 |
Result by the conventional algorithm | 0.0055 | 0.0589 | 1.6168 | |
Result by the proposed algorithm | 0.0155 | 0.165 | 9.1692 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ouyang, J.; Wei, Y.; Liu, F.; Zhang, G. Real-Time Vision through Haze Based on Polarization Imaging. Appl. Sci. 2019, 9, 142. https://doi.org/10.3390/app9010142
Wang X, Ouyang J, Wei Y, Liu F, Zhang G. Real-Time Vision through Haze Based on Polarization Imaging. Applied Sciences. 2019; 9(1):142. https://doi.org/10.3390/app9010142
Chicago/Turabian StyleWang, Xinhua, Jihong Ouyang, Yi Wei, Fei Liu, and Guang Zhang. 2019. "Real-Time Vision through Haze Based on Polarization Imaging" Applied Sciences 9, no. 1: 142. https://doi.org/10.3390/app9010142
APA StyleWang, X., Ouyang, J., Wei, Y., Liu, F., & Zhang, G. (2019). Real-Time Vision through Haze Based on Polarization Imaging. Applied Sciences, 9(1), 142. https://doi.org/10.3390/app9010142