An Improved Real-Time Contrasts Control Chart Using Novelty Detection and Variable Importance
Abstract
:1. Introduction
2. Real-Time Contrast Control Chart
2.1. Real-Time Contrast (RTC)
2.2. Control Limit
2.3. Random Forests
2.4. Fault Isolation Using Variable Importance
3. Proposed Method
3.1. Phase I
3.2. Phase II
4. Experiments
4.1. Data Description and Experimental Design
4.2. Experimental Result
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.; Tsung, F.; Zou, C. A general framework for monitoring complex processes with both in-control and out-of-control information. Comput. Ind. Eng. 2015, 85, 157–168. [Google Scholar] [CrossRef]
- Bersimis, S.; Sgora, A.; Psarakis, S. The application of multivariate statistical process monitoring in non-industrial processes. Qual. Technol. Quant. Manag. 2018, 15, 526–549. [Google Scholar] [CrossRef]
- Lowry, C.A.; Woodall, W.H.; Champ, C.W. A Multivariate Exponentially Weighted Moving Average Control Chart. Digit. Signal Process. 2014, 27, 159–166. [Google Scholar] [CrossRef]
- Crosier, R.B. American Society for Quality Multivariate Generalizations of Cumulative Sum Quality-Control Schemes. Technometrics 1988, 30, 291–303. [Google Scholar] [CrossRef]
- Hotelling, H. Multivariate Quality Control. In Techniques of Statistical Analysis; McGraw-Hill: New York, NY, USA, 1947; pp. 111–184. [Google Scholar]
- Hwang, W.; Runger, G.; Tuv, E. Multivariate statistical process control with artificial contrasts. IIE Trans. Inst. Ind. Eng. 2007, 39, 659–669. [Google Scholar] [CrossRef]
- Hu, J.; Runger, G.; Tuv, E. Tuned artificial contrasts to detect signals. Int. J. Prod. Res. 2007, 45, 5527–5534. [Google Scholar] [CrossRef]
- Hwang, W.Y.; Lee, J.S. Shifting artificial data to detect system failures. Int. Trans. Oper. Res. 2015, 22, 363–378. [Google Scholar] [CrossRef]
- Deng, H.; Runger, G.; Tuv, E. System monitoring with real-time contrasts. J. Qual. Technol. 2012, 44, 9–27. [Google Scholar] [CrossRef]
- Jang, S.; Park, S.H.; Baek, J.G. Real-time contrasts control chart using random forests with weighted voting. Expert Syst. Appl. 2017, 71, 358–369. [Google Scholar] [CrossRef]
- Wei, Q.; Huang, W.; Jiang, W.; Zhao, W. Real-time process monitoring using kernel distances. Int. J. Prod. Res. 2016, 7543, 1–15. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2012, 9. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 140, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Manual on Setting Up, Using, and Understanding Random Forests v3.1; Statistics Department, University of California: Berkeley, CA, USA, 2002; pp. 1–33. [Google Scholar]
- Sch, B.; Sung, K.; Burges, C.J.C.; Girosi, F.; Niyogi, P.; Poggio, T.; Vapnik, V. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifier. IEEE Trans. Signal Process. 1997, 45, 2758–2765. [Google Scholar] [CrossRef]
- Hayton, P.; Schölkopf, B.; Tarassenko, L.; Anuzis, P. Support vector novelty detection applied to jet engine vibration spectra. Adv. Neural Inf. Process. Syst. 2001, 13, 946–952. [Google Scholar] [CrossRef]
- Mitiche, I.; Morison, G.; Nesbitt, A.; Hughes-Narborough, M.; Stewart, B.G.; Boreham, P. Classification of EMI discharge sources using time—frequency features and multi-class support vector machine. Electr. Power Syst. Res. 2018, 163, 261–269. [Google Scholar] [CrossRef]
- Gardner, A.B.; Krieger, A.M.; Vachtsevanos, G.; Litt, B. One-Class Novelty Detection for Seizure Analysis from Intracranial EEG. J. Mach. Learn. Res. 2006, 7, 1025–1044. [Google Scholar] [CrossRef]
- Sun, R.; Tsung, F. A kernel-distance-based multivariate control chart using support vector methods. Int. J. Prod. Res. 2003, 41, 2975–2989. [Google Scholar] [CrossRef]
- Hunter, J.S. The Exponentially Weighted Moving Average. J. Technol. 1986, 18, 203–210. [Google Scholar] [CrossRef]
- Hassan, M.M.; Huda, S.; Yearwood, J.; Jelinek, H.F.; Almogren, A. Multistage fusion approaches based on a generative model and multivariate exponentially weighted moving average for diagnosis of cardiovascular autonomic nerve dysfunction. Inf. Fusion 2018, 41, 105–118. [Google Scholar] [CrossRef]
- Tran, K.P.; Castagliola, P.; Celano, G.; Khoo, M.B.C. Monitoring compositional data using multivariate exponentially weighted moving average scheme. Qual. Reliab. Eng. Int. 2018, 34, 391–402. [Google Scholar] [CrossRef]
- Harrou, F.; Sun, Y.; Taghezouit, B.; Saidi, A.; Hamlati, M.E. Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches. Renew. Energy 2018, 116, 22–37. [Google Scholar] [CrossRef]
Description | Parameter | Value |
---|---|---|
Size of reference data | 2000 | |
Window size | 10 | |
Non-centrality parameter | 1.0, 2.0, 2.5, 3.0 | |
Weighting constant of MEWMA | θ | 0.3 |
Dimension of observation vectors | 10, 50, 100 |
Shift Size | ARL1 (Std. Error) | |||
---|---|---|---|---|
Case 1 | Case 2 | |||
Original RTC | Proposed RTC | Original RTC | Proposed RTC | |
1.0 | 9.03 (0.27) | 8.11 (0.18) | 9.94 (0.1) | 8.81 (0.13) |
2.0 | 8.64 (0.36) | 7.90 (0.41) | 8.79 (0.42) | 8.07 (0.33) |
2.5 | 7.92 (0.29) | 7.29 (0.33) | 7.99 (0.24) | 7.58 (0.27) |
3.0 | 7.12 (0.3) | 6.86 (0.33) | 7.37 (0.21) | 6.92 (0.28) |
Shift Size | ARL1 (Std. Error) | |||
---|---|---|---|---|
Case 1 | Case 2 | |||
Original RTC | Proposed RTC | Original RTC | Proposed RTC | |
1.0 | 10.88 (0.33) | 9.72 (0.19) | 11.22 (0.24) | 10.17 (0.17) |
2.0 | 9.95 (0.47) | 8.81 (0.41) | 10.57 (0.42) | 8.49 (0.33) |
2.5 | 9.20 (0.18) | 8.55 (0.18) | 9.18 (0.19) | 8.71 (0.11) |
3.0 | 8.54 (0.38) | 8.04 (0.11) | 8.39 (0.47) | 8.25 (0.27) |
Shift Size | ARL1 (Std. Error) | |||
---|---|---|---|---|
Case 1 | Case 2 | |||
Original RTC | Proposed RTC | Original RTC | Proposed RTC | |
1.0 | 12.70 (0.09) | 10.31 (0.16) | 12.66 (0.37) | 11.98 (0.12) |
2.0 | 12.09 (0.36) | 10.01 (0.41) | 12.27 (0.42) | 10.05 (0.33) |
2.5 | 11.78 (0.56) | 10.12 (0.26) | 11.52 (0.49) | 9.97 (0.18) |
3.0 | 11.25 (0.13) | 9.90 (0.14) | 11.30 (0.15) | 9.02 (0.41) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, K.-S.; Lee, I.-s.; Baek, J.-G. An Improved Real-Time Contrasts Control Chart Using Novelty Detection and Variable Importance. Appl. Sci. 2019, 9, 173. https://doi.org/10.3390/app9010173
Shin K-S, Lee I-s, Baek J-G. An Improved Real-Time Contrasts Control Chart Using Novelty Detection and Variable Importance. Applied Sciences. 2019; 9(1):173. https://doi.org/10.3390/app9010173
Chicago/Turabian StyleShin, Kwang-Su, In-seok Lee, and Jun-Geol Baek. 2019. "An Improved Real-Time Contrasts Control Chart Using Novelty Detection and Variable Importance" Applied Sciences 9, no. 1: 173. https://doi.org/10.3390/app9010173
APA StyleShin, K. -S., Lee, I. -s., & Baek, J. -G. (2019). An Improved Real-Time Contrasts Control Chart Using Novelty Detection and Variable Importance. Applied Sciences, 9(1), 173. https://doi.org/10.3390/app9010173