Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental
2.1. Preparation of SBA Coating Solution
2.2. Fabrication of Hydrophobic Surfaces
2.3. Characterization:
3. Results and Discussion
3.1. Field-Emission Scanning Electron Microscopy (FESEM)
3.2. Energy Dispersive Spectroscopy (EDS)
3.3. X-Ray Fluorescent Spectroscopy (XRF)
3.4. Water Contact Angle Test
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laurent, A.; Bakas, I.; Clavreul, J.; Bernstad, A.; Niero, M.; Gentil, E.; Hauschild, M.Z.; Christensen, T.H. Review of LCA studies of solid waste management systems–Part I: Lessons learned and perspectives. Waste Manag. 2014, 34, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.A.; Sales, A.; Almeida, F.d.C.R.; Moretti, J.P.; Portella, K.F. Concretes made with sugarcane bagasse ash: Evaluation of the durability for carbonation and abrasion tests. Ambient. Constr. 2011, 11, 201–212. [Google Scholar] [CrossRef]
- Khan, S.; Kamal, M.; Haroon, M. Potential of cement-treated sugar cane bagasse ash (SCBA) as highway construction material. Road Trans. Res. 2015, 24, 35–43. [Google Scholar]
- Arumugam, A.; Ponnusami, V. Modified SBA-15 synthesized using sugarcane leaf ash for nickel adsorption. Indian J. Chem. Technol. 2013, 20, 101–105. [Google Scholar]
- Drummond, A.-R.F.; Drummond, I.W.; Research, E.C. Pyrolysis of sugar cane bagasse in a wire-mesh reactor. Ind. Eng. Chem. Res. 1996, 35, 1263–1268. [Google Scholar] [CrossRef]
- Rauf, N.; Damayanti, M.; Pratama, S.W.I. The influence of sugarcane bagasse ash as fly ash on cement quality. AIP Conf. Proc. 2017, 1801, 040009. [Google Scholar]
- Karim, A.M.; Rothstein, J.P.; Kavehpour, H.P. Experimental study of dynamic contact angles on rough hydrophobic surfaces. J. Colloid Interface Sci. 2018, 513, 658–665. [Google Scholar] [CrossRef]
- Kumar, M.; Kulkarni, M.A.; Chembu, N.G.; Banpurkar, A.; Kumaraswamy, G. Aqueous dispersions of lipid nanoparticles wet hydrophobic and superhydrophobic surfaces. Soft Matter. 2018, 14, 205–215. [Google Scholar] [CrossRef]
- Samanta, T.; Bagchi, B. Temperature effects on the hydrophobic force between two graphene-like surfaces in liquid water. J. Chem. Sci. 2018, 130, 29. [Google Scholar] [CrossRef]
- Park, M.-H.; Ha, J.-H.; Song, H.; Bae, J.; Park, S.-H. Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent. J. Ind. Eng. Chem. 2018, 68, 387–392. [Google Scholar] [CrossRef]
- Li, X.-P.; Sun, Y.-L.; Luo, C.-W.; Chao, Z.-S. UV-resistant hydrophobic CeO2 nanomaterial with photocatalytic depollution performance. Ceram. Int. 2018, 44, 13439–13443. [Google Scholar] [CrossRef]
- Saharudin, K.A.; Sreekantan, S.; Basiron, N.; Chun, L.K.; Kumaravel, V.; Abdullah, T.K.; Ahmad, Z.A. Improved super-hydrophobicity of eco-friendly coating from palm oil fuel ash (POFA) waste. Surf. Coat. Technol. 2018, 337, 126–135. [Google Scholar] [CrossRef]
- Basiron, N.; Sreekantan, S.; Saharudin, K.A.; Ahmad, Z.A.; Kumaravel, V. Improved Adhesion of Nonfluorinated ZnO Nanotriangle Superhydrophobic Layer on Glass Surface by Spray-Coating Method. J. Nanomater. 2018, 2018, 7824827. [Google Scholar] [CrossRef]
- Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 2005, 21, 956–961. [Google Scholar] [CrossRef]
- Marmur, A. The lotus effect: Superhydrophobicity and metastability. Langmuir 2004, 20, 3517–3519. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir 2006, 22, 2966–2967. [Google Scholar] [CrossRef] [PubMed]
- Kichigina, G.A.; Kushch, P.P.; Krivonogova, E.A.; Kiryukhin, D.P.; Dorohov, V.G.; Barelko, V.V. Tetrafluoroethylene Telomeres Used to Prepare Fluorine-Containing Hydrophobic Silica Fabric. Inorg. Mater. Appl. Res. 2018, 9, 861–867. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Awais, M.; Hussain, S.Z.; Hussain, I.; Husain, S.W.; Subhani, T. Durable and self-healing superhydrophobic surfaces for building materials. Mater. Lett. 2017, 192, 56–59. [Google Scholar] [CrossRef]
- Alfieri, I.; Lorenzi, A.; Ranzenigo, L.; Lazzarini, L.; Predieri, G.; Lottici, P.P. Synthesis and characterization of photocatalytic hydrophobic hybrid TiO2-SiO2 coatings for building applications. Build. Environ. 2017, 111, 72–79. [Google Scholar] [CrossRef]
- Midtdal, K.; Jelle, B.P. Self-cleaning glazing products: A state-of-the-art review and future research pathways. Sol. Energy Mater. Sol. Cells 2013, 109, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Guo, D.; Yu, C.; Li, K.; Liu, M.; Jiang, L. Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: A brief study on the functions and applications. ACS Appl. Mater. Interfaces 2015, 8, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Mates, J.E.; Bayer, I.S.; Palumbo, J.M.; Carroll, P.J.; Megaridis, C.M. Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 2015, 6, 8874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, R.; Glinel, K.; De Smet, D.; Vanneste, M.; Mannu, N.; Kartheuser, B.; Nysten, B.; Jonas, A.M. Environmentally Friendly Super-Water-Repellent Fabrics Prepared from Water-Based Suspensions. ACS Appl. Mater. Interfaces 2018, 10, 15346–15351. [Google Scholar] [CrossRef]
- Simpson, J.T.; Hunter, S.R.; Aytug, T. Superhydrophobic materials and coatings: A review. Rep. Prog. Phys. 2015, 78, 086501. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Li, X.; Deng, C.; Zhang, Q.; Yi, D.; Wang, X.; Tang, Y.; Wang, Y. Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly. J. Colloid Interface Sci. 2018, 531, 555–563. [Google Scholar] [CrossRef]
- Chang, C.-C.; Huang, F.-H.; Chang, H.-H.; Don, T.-M.; Chen, C.-C.; Cheng, L.-P. Preparation of water-resistant antifog hard coatings on plastic substrate. Langmuir 2012, 28, 17193–17201. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Yu, X.; Jia, J.; Tu, S.-T.; Yan, J.; Dahlquist, E. Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption. Appl. Energy. 2012, 90, 167–174. [Google Scholar] [CrossRef]
- Zheng, C.; Cheng, Y.; Wei, Q.; Li, X.; Zhang, Z. Suspension of surface-modified nano-SiO2 in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery. Colloids Surf. A 2017, 524, 169–177. [Google Scholar] [CrossRef]
- Choi, S.K.; Son, H.A.; Kim, H.T.; Kim, J.W. Nanofluid Enhanced Oil Recovery Using Hydrophobically Associative Zwitterionic Polymer-Coated Silica Nanoparticles. Energy Fuels. 2017, 31, 7777–7782. [Google Scholar] [CrossRef]
- Liu, F.; Ma, M.; Zang, D.; Gao, Z.; Wang, C. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr. Polym. 2014, 103, 480–487. [Google Scholar] [CrossRef]
- Ding, S.; Xiang, T.; Li, C.; Zheng, S.; Wang, J.; Zhang, M.; Dong, C.; Chan, W. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel. Mater. Design. 2017, 117, 280–288. [Google Scholar] [CrossRef]
- Colangiuli, D.; Lettieri, M.; Masieri, M.; Calia, A. Field study in an urban environment of simultaneous self-cleaning and hydrophobic nanosized TiO2-based coatings on stone for the protection of building surface. Sci. Total Environ. 2019, 650, 2919–2930. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Hu, J.; Lin, X.; Fang, L.; Wu, F.; Liao, X.; Luo, H.; Shi, L. Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles. Appl. Surf. Sci. 2018, 457, 870–880. [Google Scholar] [CrossRef]
- Rathnayake, R.M.N.M.; Mantilaka, M.M.M.G.P.G.; Hara, M.; Huang, H.-H.; Wijayasinghe, H.W.M.A.C.; Yoshimura, M.; Pitawala, H.M.T.G.A. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces. Appl. Surf. Sci. 2017, 410, 445–453. [Google Scholar] [CrossRef]
- Li, N.; Pranantyo, D.; Kang, E.T.; Wright, D.S.; Luo, H.K. In Situ Self-Assembled Polyoxotitanate Cages on Flexible Cellulosic Substrates: Multifunctional Coating for Hydrophobic, Antibacterial, and UV-Blocking Applications. Adv. Funct. Mater. 2018, 28, 1800345. [Google Scholar] [CrossRef]
- Zhou, M.; Xiong, X.; Jiang, B.; Weng, C. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding. Appl. Surf. Sci. 2018, 427, 854–860. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chiu, C.-Y.; Yang, J.-T.; Yeh, J.A. Investigation and application of an ultrahydrophobic hybrid-structured surface with anti-sticking character. J. Micromech. Microeng. 2009, 19, 085022. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Zhang, M.; Ma, M.; Wang, C.; Li, J. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Appl. Surf. Sci. 2013, 280, 686–692. [Google Scholar] [CrossRef]
- Zuo, J.; Chung, T.-S.; O’Brien, G.S.; Kosar, W. Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J. Membr. Sci. 2017, 523, 103–110. [Google Scholar] [CrossRef]
- Ruan, M.; Wang, J.; Liu, Q.; Ma, F.; Yu, Z.; Feng, W.; Chen, Y. Superhydrophobic and anti-icing properties of sol–gel prepared alumina coatings. Rus. J. Non-Ferrous Met. 2016, 57, 638–645. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farhadi, S.; Nose, K.; Du, X.W. Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 2011, 27, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Huovinen, E.; Hirvi, J.; Suvanto, M.; Pakkanen, T.A. Micro–micro hierarchy replacing micro–nano hierarchy: A precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Langmuir 2012, 28, 14747–14755. [Google Scholar] [CrossRef] [PubMed]
- Barshilia, H.C.; Gupta, N. Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar + O2 plasma etching process. Vacuum 2014, 99, 42–48. [Google Scholar] [CrossRef]
- Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C.D.; Riehle, M.O. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 2005, 5, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Haghdoost, A.; Pitchumani, R. Fabricating superhydrophobic surfaces via a two-step electrodeposition technique. Langmuir 2013, 30, 4183–4191. [Google Scholar] [CrossRef] [PubMed]
- Husni, H.; Nazari, M.R.; Yee, H.M.; Rohim, R.; Yusuff, A.; Ariff, M.A.M.; Ahmad, N.N.R.; Leo, C.P.; Junaidi, M.U.M. Superhydrophobic rice husk ash coating on concrete. Constr. Build. Mater. 2017, 144, 385–391. [Google Scholar] [CrossRef]
- Xu, K.; Sun, Q.; Guo, Y.; Dong, S. Effects of modifiers on the hydrophobicity of SiO2 films from nano-husk ash. Appl. Surf. Sci. 2013, 276, 796–801. [Google Scholar] [CrossRef]
- Wong, H.S.; Barakat, R.; Alhilali, A.; Saleh, M.; Cheeseman, C.R. Hydrophobic concrete using waste paper sludge ash. Cem. Concr. Res. 2015, 70, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Spathi, C.; Young, N.; Heng, J.Y.Y.; Vandeperre, L.J.M.; Cheeseman, C.R. A simple method for preparing super-hydrophobic powder from paper sludge ash. Mater. Lett. 2015, 142, 80–83. [Google Scholar] [CrossRef]
- Bayer, I.S.; Davis, A.J.; Biswas, A. Robust superhydrophobic surfaces from small diffusion flame treatment of hydrophobic polymers. RSC Adv. 2014, 4, 264–268. [Google Scholar] [CrossRef]
- Bayer, I.S.; Davis, A.J.; Loth, E.; Steele, A. Water jet resistant superhydrophobic carbonaceous films by flame synthesis and tribocharging. Mater. Today Commun. 2015, 3, 57–68. [Google Scholar] [CrossRef]
- Aigbodion, V.S.; Hassan, S.B.; Ause, T.; Nyior, G.B. Potential utilization of solid waste (bagasse ash). Int. J. Miner. Mater. Charact. Eng. 2010, 9, 67–77. [Google Scholar] [CrossRef]
- Batra, V.S.; Urbonaite, S.; Svensson, G. Characterization of unburned carbon in bagasse fly ash. Fuel 2008, 87, 2972–2976. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Constr. Build. Mater. 2012, 29, 641–646. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr. Build. Mater. 2009, 23, 3523–3531. [Google Scholar] [CrossRef]
- Bahurudeen, A.; Kanraj, D.; Dev, V.G.; Santhanam, M. Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cem. Concr. Compos. 2015, 59, 77–88. [Google Scholar] [CrossRef]
- Worathanakul, P.; Payubnop, W.; Muangpet, A. Characterization for post-treatment effect of bagasse ash for silica extraction. Int. J. Chem. Mol. Eng. 2009, 3, 398–400. [Google Scholar]
Weight% | |||
---|---|---|---|
Components | Raw Sample | After Acid Treatment | After Acid Treatment |
SBA 500 °C | SBA 750 °C | ||
SiO2 | 54.20 | 87.63 | 94.2 |
CaO | 3.77 | 1.26 | 2.16 |
SO3 | 16.10 | 0.45 | 1.34 |
Al2O3 | 0.20 | 0.40 | 0.94 |
K2O | 1.26 | 0.28 | 0.41 |
MgO | 20.72 | 0.19 | 0.39 |
P2O5 | 7.36 | 0.07 | 0.20 |
Fe2O3 | 0.78 | 0.06 | 0.11 |
TiO2 | 0.01 | 0.01 | 0.03 |
MnO | 1.45 | - | 0.01 |
CuO | 0.06 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natarajan, S.; Subramaniyam, S.T.; Kumaravel, V. Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source. Appl. Sci. 2019, 9, 190. https://doi.org/10.3390/app9010190
Natarajan S, Subramaniyam ST, Kumaravel V. Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source. Applied Sciences. 2019; 9(1):190. https://doi.org/10.3390/app9010190
Chicago/Turabian StyleNatarajan, Sriharan, Senthil Thottipalayam Subramaniyam, and Vignesh Kumaravel. 2019. "Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source" Applied Sciences 9, no. 1: 190. https://doi.org/10.3390/app9010190
APA StyleNatarajan, S., Subramaniyam, S. T., & Kumaravel, V. (2019). Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source. Applied Sciences, 9(1), 190. https://doi.org/10.3390/app9010190