Performance Study and Efficiency Improvement of Ice Slurry Production by Scraped-Surface Method
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Apparatus
2.2. Experimental Procedure
2.3. Materials
3. Results and Discussion
3.1. Influence of Concentration of Sodium Chloride Solution
3.2. Influence of Solution Flow Rate
3.3. Influence of Scraping Speed on the System Performance
3.4. Influence of Nanoparticles on the System Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fang, G.Y.; Tang, F.; Cao, L. Dynamic characteristics of cool thermal energy storage systems—A review. Int. J. Green Energy 2016, 13, 1–13. [Google Scholar] [CrossRef]
- Li, G.; Hwang, Y.H.; Radermacher, R. Review of cold storage materials for air conditioning application. Int. J. Refrig. 2012, 35, 2053–2077. [Google Scholar] [CrossRef]
- Yao, Y.H.; Rismanchi, B. A review on cool thermal storage technologies and operating strategies. Renew. Sustain. Energy Rev. 2012, 16, 787–797. [Google Scholar] [CrossRef]
- Kauffeld, M.; Wang, M.J.; Goldstein, V.; Kasza, K.E. Ice slurry applications. Int. J. Refrig. 2010, 33, 1491–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Ma, Z.W. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems. Renew. Sustain. Energy Rev. 2012, 16, 5021–5058. [Google Scholar] [CrossRef]
- Yamada, M.; Fukusako, S.; Kawabe, H. A quantitative evaluation of the production performance of ice slurry by the oscillatory moving cooled wall method. Int. J. Refrig. 2002, 25, 199–207. [Google Scholar] [CrossRef]
- Rayhan, F.A.; Pamitran, A.S. Performance of ice slurry generator with mechanical scraper using R-22 and R-290. Int. J. Technol. 2017, 8, 1191–1196. [Google Scholar] [CrossRef]
- Bédécarrats, J.P.; David, T.; Castaing-Lasvignottes, J. Ice slurry production using supercooling phenomenon. Int. J. Refrig. 2010, 33, 196–204. [Google Scholar] [CrossRef]
- Thongwilk, S.; Vorayos, N.; Kiatsiriroat, T.; Nuntaphan, A. Thermal analysis of slurry ice production system using direct contact heat transfer of carbon dioxide and water mixture. Int. Commun. Heat Mass 2008, 35, 756–761. [Google Scholar] [CrossRef]
- Byrd, L.W.; Mulligan, J.C. A population balance approach to direct-contact secondary refrigerant freezing. AIChE J. 1986, 32, 1881–1888. [Google Scholar] [CrossRef]
- Peng, Z.B.; Yuan, Z.L.; Liang, K.F.; Cai, J. Ice slurry formation in a concurrent liquid-liquid flow. Chin. J. Chem. Eng. 2008, 16, 552–557. [Google Scholar] [CrossRef]
- Shin, H.T.; Lee, Y.P.; Jurng, J. Spherical-shaped ice particle production by spraying water in a vacuum chamber. Appl. Therm. Eng. 2000, 20, 439–454. [Google Scholar] [CrossRef]
- Lugo, R.; Fournaison, L.; Guilpart, J. Ice-liquid-vapour equilibria of ammonia and ethanol aqueous solutions applied to the production of ice-slurries: Prediction and experimental results. Chem. Eng. Process. 2006, 45, 66–72. [Google Scholar] [CrossRef]
- Qin, F.; Chen, X.D.; Ramachandra, S.; Free, K. Heat transfer and power consumption in a scraped-surface heat exchanger while freezing aqueous solutions. Sep. Purif. Technol. 2006, 48, 150–158. [Google Scholar] [CrossRef]
- Martínez, D.S.; Solano, J.P.; Illán, F.; Viedma, A. Analysis of heat transfer phenomena during ice slurry production in scraped surface plate heat exchangers. Int. J. Refrig. 2014, 48, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Lakhdar, M.B.; Cerecero, R.; Alvarez, G.; Guilpart, J.; Flick, D.; Lallemand, A. Heat transfer with freezing in a scraped surface heat exchanger. Appl. Therm. Eng. 2005, 25, 45–60. [Google Scholar] [CrossRef]
- Mouneer, T.A.; El-Morsi, M.S.; Nosier, M.A.; Mahmoud, N.A. Heat transfer performance of a newly developed ice slurry generator: A comparative study. Ain Shams Eng. J. 2010, 1, 147–157. [Google Scholar] [CrossRef]
- Yau, L.; Lee, S. Feasibility study of an ice slurry-cooling coil for HVAC and R systems in a tropical building. Appl. Energy 2010, 87, 2699–2711. [Google Scholar] [CrossRef]
- Stamatiou, E.; Meewisse, J.W.; Kawaji, M. Ice slurry generation involving moving parts. Int. J. Refrig. 2005, 28, 60–72. [Google Scholar] [CrossRef]
- Matsumoto, K.; Akimoto, T.; Teraoka, Y. Study of scraping force of ice growing on cooling solid surface. Int. J. Refrig. 2010, 33, 419–427. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; He, Y.; Hu, Y.; Zhu, J.; Jiang, B. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl. Therm. Eng. 2015, 88, 363–368. [Google Scholar] [CrossRef]
- Teng, T.P.; Hung, Y.H.; Teng, T.C.; Mo, H.E.; Hsu, H.G. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl. Therm. Eng. 2010, 30, 2213–2218. [Google Scholar] [CrossRef]
- Sonawane, S.; Patankar, K.; Fogla, A.; Puranik, B.; Bhandarkar, U.; Kumar, S.S. An experimental investigation of thermo-physical properties and heat transfer performance of Al2O3-Aviation Turbine Fuel nanofluids. Appl. Therm. Eng. 2011, 31, 2841–2849. [Google Scholar] [CrossRef]
- Khodadadi, J.M.; Fan, L.; Babaei, H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2013, 24, 418–444. [Google Scholar] [CrossRef]
- Song, Y.H.; Bu, J.; Zuo, M.; Gao, Y.; Zhang, W.J.; Zheng, Q. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer 2017, 127, 141–149. [Google Scholar] [CrossRef]
- Koji, M.; Yoshito, I.; Daisauke, S.; Keisuke, H. Investigation of the influence of surfactant on the degree of supercooling (coexisting system of solid-liquid and gas-liquid interfaces). Int. J. Refrig. 2013, 36, 1302–1309. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wu, P.; Qin, L.M.; Zhang, X.B.; Tian, X.J. Analysis of the nucleation of nanofluids in the ice formation process. Energy Convers. Manag. 2010, 51, 130–134. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Kalaiselvam, S. Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochim. Acta 2012, 533, 46–55. [Google Scholar] [CrossRef]
- Wu, S.Y.; Zhu, D.S.; Li, X.F.; Li, H.; Lei, J.X. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim. Acta 2009, 483, 73–77. [Google Scholar] [CrossRef]
- He, Q.B.; Wang, S.F.; Tong, M.W.; Liu, Y.D. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers. Manag. 2012, 64, 199–205. [Google Scholar] [CrossRef]
- Jia, L.S.; Peng, L.; Chen, Y.; Mo, S.P.; Li, X. Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate. Appl. Energy 2014, 124, 248–255. [Google Scholar] [CrossRef]
- Wang, X.J.; Li, X.F.; Xu, Y.H.; Zhu, D.S. Thermal energy storage characteristics of Cu–H2O nanofluids. Energy 2014, 78, 212–217. [Google Scholar] [CrossRef]
- Liu, Y.D.; Li, X.; Hu, P.F.; Hu, G.H. Study on the supercooling degree and nucleation behavior of water-based graphene oxide nanofluids PCM. Int. J. Refrig. 2015, 50, 80–86. [Google Scholar] [CrossRef]
- Liu, Y.D.; Li, Y.M.; Hu, P.F.; Li, X.; Gao, R.N.; Peng, Q.G.; Wei, L.Z. The effects of graphene oxide nanosheets and ultrasonic oscillation on the supercooling and nucleation behavior of nanofluids PCMs. Microfluid. Nanofluid. 2015, 18, 81–89. [Google Scholar] [CrossRef]
- Coleman, H.W.; Steele, W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed.; Wiley: New York, NY, USA, 2009; pp. 29–83. [Google Scholar]
- O’Hanley, H.; Buongiorno, J.; McKrell, T.; Hu, L.W. Measurement and model validation of specific heat capacity with differential scanning calorimetry. Adv. Mech. Eng. 2012, 4, 181079. [Google Scholar] [CrossRef]
- Ferrouillat, S.; Bontemps, A.; Poncelet, O.; Soriano, O. Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids. Appl. Therm. Eng. 2013, 51, 839–851. [Google Scholar] [CrossRef]
- Leiper, A.N.; Hammond, E.C.; Ash, D.G.; McBryde, D.J.; Quarini, G.L. Energy conservation in ice slurry applications. Appl. Therm. Eng. 2013, 51, 1255–1262. [Google Scholar] [CrossRef]
- Knopf, D.A.; Koop, T. Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res. 2006, 111, 2193–2214. [Google Scholar] [CrossRef]
- Syam, S.; Venkata, R.; Manoj, S.; Antonio, S. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study. Int. Commun. Heat Mass 2014, 56, 86–95. [Google Scholar] [CrossRef]
- Fu, Y.X.; He, Z.X.; Mo, D.C.; Lu, S.S. Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int. J. Therm. Sci. 2014, 86, 276–283. [Google Scholar] [CrossRef]
- Xing, M.B.; Yu, J.L.; Wang, R.X. Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int. J. Therm. Sci. 2016, 104, 404–411. [Google Scholar] [CrossRef]
- Keblinski, P.; Phillpotb, S.R.; Choi, S.U.S.; Eastmanb, J.A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Tran. 2002, 45, 855–863. [Google Scholar] [CrossRef]
- Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated maxwell model. J. Nanopart. Res. 2003, 5, 167–171. [Google Scholar] [CrossRef]
No. | Variable | Value |
---|---|---|
1 | Scraping speed | 0–29 rpm |
2 | Number of rotating blade | 2 |
3 | Height of rotating blade | 180 mm |
4 | Width of rotating blade | 32 mm |
5 | Thickness of rotating blade | 12 mm |
6 | Material of rotating blade | Teflon |
7 | Distance between rotating blade and the inner wall | 0.2 mm |
No. | Variable | Uncertainty |
---|---|---|
1 | Temperature | 0.2 K |
2 | Volume flow rate | 0.04 m3/h |
3 | Power consumption | 0.01 kWh |
4 | Weight | 0.01 g |
5 | Particle size of nanosilica | 0.5 nm |
6 | IPF | 0.05–0.25% |
7 | COP | 0.006–0.013 |
Mass Concentrations (%) | Deionized Water (g) | Sodium Chloride (g) | Parent Nanofluid (g) |
---|---|---|---|
0.05 | 958.33 | 40 | 1.67 |
0.1 | 956.67 | 40 | 3.33 |
0.2 | 953.33 | 40 | 6.67 |
0.5 | 943.33 | 40 | 16.67 |
0.75 | 935 | 40 | 25.0 |
1 | 926.67 | 40 | 33.33 |
Mass Concentrations (%) | 1 | 2 | 3 | 4 | 5 | 6 |
Specific Heat (J/kg K) | 4112 | 4053 | 4005 | 3962 | 3918 | 3874 |
Mass Concentrations (%) | 0.05 | 0.1 | 0.2 | 0.5 | 0.75 | 1 |
Specific Heat (J/kg K) | 3961 | 3959 | 3956 | 3947 | 3940 | 3932 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, Y.; Zhuang, K.; Fu, R.; Lin, S.; Li, X. Performance Study and Efficiency Improvement of Ice Slurry Production by Scraped-Surface Method. Appl. Sci. 2019, 9, 74. https://doi.org/10.3390/app9010074
Liu X, Li Y, Zhuang K, Fu R, Lin S, Li X. Performance Study and Efficiency Improvement of Ice Slurry Production by Scraped-Surface Method. Applied Sciences. 2019; 9(1):74. https://doi.org/10.3390/app9010074
Chicago/Turabian StyleLiu, Xi, Yueling Li, Kunyu Zhuang, Ruansong Fu, Shi Lin, and Xuelai Li. 2019. "Performance Study and Efficiency Improvement of Ice Slurry Production by Scraped-Surface Method" Applied Sciences 9, no. 1: 74. https://doi.org/10.3390/app9010074
APA StyleLiu, X., Li, Y., Zhuang, K., Fu, R., Lin, S., & Li, X. (2019). Performance Study and Efficiency Improvement of Ice Slurry Production by Scraped-Surface Method. Applied Sciences, 9(1), 74. https://doi.org/10.3390/app9010074