Frequency Difference Thermally and Electrically Tunable Dual-Frequency Nd:YAG/LiTaO3 Microchip Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Theoretical Analysis
4. Experimental Results and Discussion
4.1. Thermally Tunable Frequency Difference
4.2. Electrically Tunable Frequency Difference
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pillet, G.; Morvan, L.; Ménager, L.; Garcia, A.; Babiel, S.; Stöhr, A. Dual-Frequency Laser Phase Locked at 100 GHz. J. Lightw. Technol. 2014, 32, 3824–3830. [Google Scholar] [CrossRef]
- Paquet, R.; Le Gratiet, L.; Sellahi, M.; Chomet, B.; Beaudoin, G.; Sagnes, I.; Garnache, A.; Blin, S.; Myara, M. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz–THz applications. Opt. Lett. 2016, 41, 3751–3754. [Google Scholar] [CrossRef] [PubMed]
- Brunel, M.; Lai, N.D.; Vallet, M.; Le Floch, A.; Bretenaker, F.; Morvan, L.; Dolfi, D.; Huignard, J.P.; Blanc, S.; Merlet, T. Generation of tunable high-purity microwave and terahertz signals by two-frequency solid state lasers. Proc. SPIE 2004, 5466. [Google Scholar] [CrossRef]
- Hu, M.; Wei, M.; Zeng, R.; Li, Q.; Lu, Y.; Wei, Y.; Zhang, Y. Microchip dual-frequency laser with well-balanced intensity utilizing temperature control. Opt. Express 2016, 24, 23383–23389. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Niu, Y.; Niu, H. Frequency difference stabilization in dual-frequency laser by stress-induced birefringence closed-loop control. Appl. Opt. 2016, 55, 4357–4361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gui, K.; Zhao, C.; Zhang, H.; Chen, S.; Zhou, G. Self-Q-switch regime based on a beat effect with a dual-frequency microchip laser. Phys. Rev. A 2018, 98, 033831. [Google Scholar] [CrossRef]
- Yang, H.; Brunel, M.; Zhang, H.; Vallet, M.; Zhao, C.; Yang, S. RF Up-Conversion and Waveform Generation Using a Frequency-Shifting Amplifying Fiber Loop, Application to Doppler Velocimetry. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, H.; Guo, D.; Hao, H.; Xia, W.; Wang, M. Self-mixing birefringent dual-frequency laser Doppler velocimeter. Opt. Express 2017, 25, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection. In Proceedings of the Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016. [Google Scholar]
- Zheng, X.; Zhao, C.; Zhang, H.; Zheng, Z.; Yang, H. Coherent dual-frequency lidar system design for distance and speed measurements. In Proceedings of the 2017 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications, Beijing, China, 28–30 October 2017. [Google Scholar]
- Mckay, A.; Dawes, J.M. Tunable Terahertz Signals Using a Helicoidally Polarized Ceramic Microchip Laser. IEEE Photonics Technol. Lett. 2009, 21, 480–482. [Google Scholar] [CrossRef]
- Romanelli, M.; Wang, L.; Brunel, M.; Vallet, M. Measuring the universal synchronization properties of driven oscillators across a Hopf instability. Opt. Express 2014, 22, 7364–7373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.N.; Li, Y.; Guo, H.; Zhu, J.; Zhang, S. Novel tunable dual-frequency laser with large frequency difference. Chin. J. Lasers 2002, 11, 229–231. [Google Scholar] [CrossRef]
- Brunel, M.; Amon, A.; Vallet, M. Dual-polarization microchip lasers at 1.53 um. Opt. Lett. 2005, 30, 2418–2420. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zheng, S.; Chi, H.; Jin, X.; Zhang, X. Electro-optically tunable microwave source based on composite-cavity microchip laser. Opt. Express 2012, 20, 29090–29095. [Google Scholar] [CrossRef] [PubMed]
- Rolland, A.; Brunel, M.; Loas, G.; Frein, L.; Vallet, M.; Alouini, M. Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion. Opt. Express 2011, 19, 4399–4404. [Google Scholar] [CrossRef] [PubMed]
- Rolland, A.; Frein, L.; Vallet, M.; Brunel, M.; Bondu, F.; Merlet, T. 40-GHz Photonic Synthesizer Using a Dual-Polarization Microlaser. IEEE Photonics Technol. Lett. 2010, 22, 1738–1740. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, S. The frequency split phenomenon in a He-Ne laser with a rotational quartz plate in its cavity. Opt. Commun. 1988, 68, 55–57. [Google Scholar] [CrossRef]
- Jin, Y.Y.; Zhang, S.L.; Li, Y.; Guo, J.-H.; Li, J.-Q. Zeeman-birefringence He-Ne dual frequency laser. Chin. Phys. Lett. 2001, 18, 533–536. [Google Scholar] [CrossRef]
- Gudelev, V.G.; Mashko, V.V.; Nikeenko, N.K.; Ryabtsev, G.I.; Stalmashonak, A.B.; Teplyashin, L.L. Diode-pumped cw tunable two-frequency YAG:Nd3+ laser with coupled resonators. Appl. Phys. B 2003, 76, 249–252. [Google Scholar] [CrossRef]
- Rolland, A.; Loas, G.; Brunel, M.; Frein, L.; Vallet, M.; Alouini, M. Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: Towards a narrow linewidth tunable THz source. Opt. Express 2011, 19, 17944–17950. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, K.; Zhang, Z.; Xing, Y.; Zhang, H.; Zhao, C. Frequency Difference Thermally and Electrically Tunable Dual-Frequency Nd:YAG/LiTaO3 Microchip Laser. Appl. Sci. 2019, 9, 1969. https://doi.org/10.3390/app9101969
Gui K, Zhang Z, Xing Y, Zhang H, Zhao C. Frequency Difference Thermally and Electrically Tunable Dual-Frequency Nd:YAG/LiTaO3 Microchip Laser. Applied Sciences. 2019; 9(10):1969. https://doi.org/10.3390/app9101969
Chicago/Turabian StyleGui, Kun, Zilong Zhang, Yuxiao Xing, Haiyang Zhang, and Changming Zhao. 2019. "Frequency Difference Thermally and Electrically Tunable Dual-Frequency Nd:YAG/LiTaO3 Microchip Laser" Applied Sciences 9, no. 10: 1969. https://doi.org/10.3390/app9101969
APA StyleGui, K., Zhang, Z., Xing, Y., Zhang, H., & Zhao, C. (2019). Frequency Difference Thermally and Electrically Tunable Dual-Frequency Nd:YAG/LiTaO3 Microchip Laser. Applied Sciences, 9(10), 1969. https://doi.org/10.3390/app9101969