Carbon Footprint of the Agricultural Sector in Qinghai Province, China
Abstract
:1. Introduction
2. Data Sources and Research Methodology
2.1. Study Area
2.2. Data Sources
2.3. Research Methodology
3. Results and Analysis
3.1. Change in TCF for Agricultural Production
3.2. Relative Contributions of Agricultural Inputs to the TCF
3.3. Changing Trends of Carbon Intensity in Output Value and Carbon Intensity in Area
4. Discussion
4.1. Related Agricultural Policies Affect the TCF
4.2. Agricultural Carbon Efficiency and the Associated Environmental Problems
4.3. Uncertainty of Evaluation of the TCF and the Related CV and CA
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Machado, K.S.; Seleme, R.; Maceno, M.M.C.; Zattar, I.C. Carbon footprint in the ethanol feedstocks cultivation—Agricultural CO2 emission assessment. Agric. Syst. 2017, 157, 140–145. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Wang, X.H. Changes in CO2 Emissions Induced by Agricultural Inputs in China over 1991–2014. Sustainability 2016, 8, 414. [Google Scholar] [CrossRef]
- Rowe, R.L.; Street, N.R.; Taylor, G. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew. Sustain. Energy Rev. 2009, 13, 271–290. [Google Scholar] [CrossRef]
- Shen, L.; Gao, T.; Zhao, J.; Wang, L.; Wang, L.; Liu, L.; Chen, F.; Xue, J. Factory-level measurements on CO2 emission factors of cement production in China. Renew. Sustain. Energy Rev. 2014, 34, 337–349. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Zhong, T.; Peng, J. Carbon footprint of different industrial spaces based on energy consumption in China. J. Geogr. Sci. 2011, 21, 285–300. [Google Scholar] [CrossRef]
- Wang, X. Spatio-temporal changes in agrochemical inputs and the risk assessment before and after the grain-for-green policy in China. Environ. Monit. Assess. 2013, 185, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Huang, Z.; Mi, S. Agricultural sector carbon footprint accounting: A case of Zhejiang, China. Issues Agric. Econ. 2011, 11, 40–47. [Google Scholar]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Wu, J.F.; Wang, X.H. Dynamic changes in the carbon intensity and sustainability of farmland use: A case study in Pingdu County, Shandong Province, China. Acta Ecol. Sin. 2017, 37, 2904–2912. [Google Scholar]
- Feng, Z.; Yang, Y.; Zhang, Y.; Zhang, P.; Li, Y. Grain-for-green policy and its impacts on grain supply in West China. Land Use Policy 2005, 22, 301–312. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, S. Impact of the Sloping Land Conversion Program on rural house hold income: An integrated estimation. Land Use Policy 2014, 40, 56–63. [Google Scholar] [CrossRef]
- Wang, X.; Lu, C.; Fang, J.; Shen, Y. Implications for development of grain-for-green policy based on cropland suitability evaluation in desertification-affected north China. Land Use Policy 2007, 24, 417–424. [Google Scholar] [CrossRef]
- Liu, H. Evolution of Chinese agricultural supporting policies and rural development. China Agric. Inf. 2012, 15, 24–25. [Google Scholar]
- Sun, T. Study of Chinese agricultural policy changes. J. Anhui Agri. Sci. 2015, 43, 346–348. [Google Scholar]
- Wang, X.; Shen, Y. Ecological restoration in West China: Problems and Proposals. AMBIO 2009, 38, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Yang, D.; Huo, J. Spatial-temporal characteristics and LMDI-Based impact factor decomposition of agricultural carbon emissions in Hotan prefecture, China. Sustainability 2016, 8, 262. [Google Scholar] [CrossRef]
- Chen, R.; Xu, C.; Deng, Y.; Jiang, Z. Research on low carbon agricultural production modes in Loess Plateau. J. Northwest A F Univ. (Soc. Sci. Ed.) 2017, 17, 55–65. [Google Scholar]
- Hu, A.; Wang, Y. Research on low carbon agriculture development in Sichuan under the background of low carbon economy. Sichuan Environ. 2015, 34, 110–114. [Google Scholar]
- Zhang, J.; Liu, L. Decoupling analysis between agricultural economic development and agricultural production energy consumption in Yunnan. Environ. Sci. Surv. 2018, 37, 29–34. [Google Scholar]
- Si, H.; Yuan, C.; Zhou, W. Effect of land-use on ecosystem service values in Qinghai province. Agric. Res. Arid Areas 2016, 34, 254–260. [Google Scholar]
- Liu, Y. Investigation Datasets of China Land Resources; Office of National Land Resources Survey: Beijing, China, 2000. [Google Scholar]
- Third Pole Environment Database. Available online: http://www.tpedatabase.cn (accessed on 15 March 2019).
- National Data, 1995–2016. Available online: http://data.stats.gov.cn (accessed on 15 March 2019).
- National Bureau of Statistics of China (NBSC). China Energy Statistical Yearbook, 1996–2017; China Statistics Press: Beijing, China, 1996–2017.
- Huo, M.; Han, X.; Shan, B. Empirical Study on Key Factors of Carbon Emission Intensity of Power Industry. Electr. Power 2013, 46, 122–126. [Google Scholar]
- National Development and Reform Commission of China (NDRCC). Guidelines for Provincial Greenhouse Gas Inventories (Trial). Available online: http://www.doc88.com/p-9819327912648.html (accessed on 15 March 2019).
- Lu, Y.; Huang, Y.; Zou, J.; Zheng, X. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere 2006, 65, 1915–1924. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.; Han, B. Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China’s cropland soil. Chin. J. App. Ecol. 2008, 19, 2239–2250. [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ); Standardization Administration of the People’s Republic of China (SAC). General Principles for Calculation of the Comprehensive Energy Consumption (GB/T 2589-2008); China Standard Press: Beijing, China, 2008.
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Tokyo, Japan, 2006. [Google Scholar]
- FAOSTAT. 2016. Available online: http://faostat3.fao.org/download/R/RL/E (accessed on 18 March 2019).
- Wang, X.; Shen, J.; Zhang, W. Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy. Energy Policy 2014, 67, 508–516. [Google Scholar] [CrossRef]
- He, J.; Feng, J. The stage features and policy choices in China’s agriculture development: A comparative analysis under the perspective of “Four Stages Theory” in international agricultural development process. Chin. Agric. Sci. Bull. 2010, 26, 439–444. [Google Scholar]
- Luan, Y.; Ren, J. Agricultural total factor energy efficiency of China and its convergence. Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 20–24. [Google Scholar]
- Zhang, X. Evaluation of China agriculture energy efficiency based on energy method. Spec. Zone Econ. 2014, 10, 143–147. [Google Scholar]
- Song, J.; Li, Y.; Song, Y.; Yan, J.; Zhou, L. Research and prospect on non-point pollution from agriculture. Chin. Agric. Sci. Bull. 2010, 26, 362–365. [Google Scholar]
- Ismael, M.; Srouji, F.; Mohamed, B.A. Agricultural technologies and carbon emissions: Evidence from Jordanian economy. Environ. Sci. Pollut. Res. 2018, 25, 10867–10877. [Google Scholar] [CrossRef]
- Benbi, D.K. Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Sci. Total Environ. 2018, 644, 611–623. [Google Scholar] [CrossRef]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier, P.G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Chang. Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef]
- Wang, X. Agricultural material inputs and the potential risk assessment for vegetable production in China. J. Resour. Ecol. 2016, 7, 269–274. [Google Scholar]
- Yang, S.; Han, R.; Liu, C. Study on the given amount per unit field and load capacity of livestock and poultry manure at provincial scale. J. China Agric. Univ. 2016, 21, 142–151. [Google Scholar]
- Zhu, Z. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil Environ. Sci. 2000, 9, 1–6. [Google Scholar]
- Wang, X. Sustainable development in Tibet requires control of agricultural nonpoint pollution. Environ. Sci. Technol. 2014, 48, 8944–8945. [Google Scholar] [CrossRef]
- Luo, Y.; Long, X.; Wu, C.; Zhang, J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.; Barati, R. Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. J. Pet. Sci. Eng. 2018, 164, 31–42. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Plasynski, S.I.; Litynski, J.T.; McIlvried, H.G.; Srivastava, R.D. Progress and New Developments in Carbon Capture and Storage. Crit. Rev. Plant Sci. 2009, 28, 123–138. [Google Scholar] [CrossRef]
- Mi, J.; Ren, J.; Wang, J.; Bao, W.; Xie, K. Ultrasonic and Microwave Desulfurization of Coal in Tetrachloroethylene. Energy Sources Part A Recovery Util. Environ. Eff. 2007, 29, 1261–1268. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Z.; Li, L. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H. On the development and utilization of land resources in Hehuang valley in Qinghai province. New Heights 2013, 32, 113–115. [Google Scholar]
Emission Source | Emission Coefficient (kg C/kg) | Reference | |
---|---|---|---|
Nitrogen | 1.74 | [30] | |
Phosphorus | 0.20 | [10] | |
Agrochemicals | Potassium | 0.15 | [10] |
Pesticides | 6.00 | [10] | |
Plastic film | 2.58 | [9] | |
Raw coal | 0.52 | [29,31] | |
Energy | Gasoline | 0.80 | [29,31] |
Diesel | 0.84 | [29,31] |
Year | Mean TCF (Kt CE) | TCF Growth Rate (%) | Mean AV (BCNY *) | AV Growth Rate (%) | Relative Contribution by N (%) | Relative Contribution by Energy (%) |
---|---|---|---|---|---|---|
1995–1999 | 196.92 | 1.57 | 5.89 | 2.61 | 49.57 | 42.36 |
2000–2007 | 184.19 | −1.02 | 7.82 | 11.94 | 51.89 | 37.78 |
2008–2016 | 270.08 | 4.85 | 24.30 | 20.70 | 44.98 | 43.16 |
1995–2016 | 222.22 | 2.83 | 14.12 | 24.32 | 48.54 | 41.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Y. Carbon Footprint of the Agricultural Sector in Qinghai Province, China. Appl. Sci. 2019, 9, 2047. https://doi.org/10.3390/app9102047
Wang X, Zhang Y. Carbon Footprint of the Agricultural Sector in Qinghai Province, China. Applied Sciences. 2019; 9(10):2047. https://doi.org/10.3390/app9102047
Chicago/Turabian StyleWang, Xiuhong, and Yili Zhang. 2019. "Carbon Footprint of the Agricultural Sector in Qinghai Province, China" Applied Sciences 9, no. 10: 2047. https://doi.org/10.3390/app9102047
APA StyleWang, X., & Zhang, Y. (2019). Carbon Footprint of the Agricultural Sector in Qinghai Province, China. Applied Sciences, 9(10), 2047. https://doi.org/10.3390/app9102047