Monitoring the Joint Area of Composite Membrane Materials
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Resistive Strain Measurement
2.2.2. High-Frequency Welding
2.2.3. Embroidery
2.2.4. Analysis of Mechanical and Electromechanical Properties
2.2.5. Sensor Layouts
2.2.6. Numerical Modelling and Simulation of Membrane Joints
3. Results and Discussion
3.1. Selection of Sensor Yarn
3.2. Embroidery and HF Welding with Conductive Sewing Thread
- Weldability: A clear physical separation between the welding electrode and any metallic objects in the welding area is a decisive factor for processability; details will be provided in the following paragraph.
- Embroidery: The sensor yarn tears very easily when exposed to strong mechanical stress, which includes the passage through the membrane.
3.3. Finite Element Analysis of the Strain Conditions at Membrane Welds and Textile Integrated Strain Measurement
3.3.1. Validation of the FEA Models
3.3.2. Sensor Positioning Based on Simulation Results
- The future positioning of weld seams within a membrane web can be determined relatively precisely on the basis of the cutting pattern even prior to the manufacturing of the membrane. The correct sensor arrangement can be predicted during membrane production. The exact prediction of local load peaks in the installed state of a membrane structure prior to its final positioning and over an extended time period (settlement effects, local false loads due to external influences, etc.) is impossible.
- Even if the seam position is defined prior to membrane manufacturing, as described in paragraph 1, this poses great challenges for manufacturers. Sensors positioned in welding seams allow for alternative approaches, such as sewing of membrane blanks with a sensor thread (embroidery and sewing processes are technologically closely related, see Section 2.2.3) with subsequent sealing of the seam by welding on a membrane cover strip (butt joint) or a butt joint that is welded directly to a cover strip with integrated textile sensor. Both facilitate a high degree of integration of the textile sensors into the ready-made membrane constructions without affecting established membrane manufacturing processes.
3.3.3. Experimental and Virtual Testing of Textile Strain Sensors in Membrane Welds
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forster, B.; Mollaert, M. European Design Guide for Tensile Surface Structures; TensiNet Vrije University: Brussel, Belgium, 2004. [Google Scholar]
- Pohl, G. (Ed.) Textiles, Polymers and Composites for Buildings; Woodhead Publishing: Oxford/Cambridge; Philadelphia, PA, USA; New Delhi, India, 2010. [Google Scholar]
- Doyle, B.E. Strong Fabrics for Fast Sails. Sci. Am. 1997, 277, 60–67. [Google Scholar] [CrossRef]
- Fangueiro, R. (Ed.) Textiles, Fibrous and Composite Materials for Civil Engineering Applications; Woodhead Publishing: Oxford/Cambridge, UK; Philadelphia, PA, USA; New Delhi, India, 2011. [Google Scholar]
- Michel, J.; Menges, G. Alterungsverhalten von Verbindungen-Gewebe/Gewebe aus PVC-Beschichtetem Polyestergewebe unter Natürlicher Bewitterung Nach Mehrjährigem Einsatz im Bauwerk; Fraunhofer IRB Verlag: Stuttgard, Germany, 1984. [Google Scholar]
- Michel, J.; Minte, J.; Menges, G. Verbindungselemente PVC-beschichteter Polyestergewebe unter zyklischer Beanspruchung. Kurzberichte aus der Bauforschung 1983, 24, 991–993. [Google Scholar]
- Schulz, U. Einfluss der Freibewitterung bei Membranwerkstoffen und ihren Verbindungen. Kurzberichte aus der Bauforschung 1988, 29, 319–320. [Google Scholar]
- Härter, H. Materialermüdung Vorbeugen Sensorfäden Überwachen Stark Beanspruchte Bauteile. Available online: http://www.elektronikpraxis.vogel.de/sensorik/articles/510873/ (accessed on 15 February 2019).
- Haentzsche, E.; Mueller, R.; Huebner, M.; Ruder, T.; Unger, R.; Nocke, A.; Cherif, C. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades. Smart Mater. Struct. 2016, 25, 105012. [Google Scholar] [CrossRef]
- De Llorens, J.I. Fabric Structures in Architecture; Woodhead Publishing: Oxford/Cambridge, UK; Philadelphia, PA, USA; New Delhi, India, 2015. [Google Scholar]
- Ando, B.; Baglio, S. All-inkjet printed strain sensors. IEEE Sens. J. 2013, 13, 4874–4879. [Google Scholar] [CrossRef]
- Žlebič, Č.; Živanov, L.; Menićanin, A.; Blaž, N.; Damnjanović, M. Inkjet printed resistive strain gages on flexible substrates. Facta Univ. Ser. Electron. Energ. 2016, 29, 89–100. [Google Scholar] [CrossRef]
- Owston, C.N. Electrical properties of single carbon fibres. J. Phys. 1970, 3, 1615–1626. [Google Scholar] [CrossRef]
- Kupke, M.; Schulte, K.; Schüler, R. Non-destructive testing of FRP by d.c. and a.c. electrical methods. Compos. Sci. Technol. 2001, 61, 837–847. [Google Scholar] [CrossRef]
- Prasse, T.; Michel, F.; Mook, G.; Schulte, K.; Bauhofer, W. A comparative investigation of electrical resistance an acoustic emission during cyclic loading of CFRP laminates. Compos. Sci. Technol. 2001, 61, 831–835. [Google Scholar] [CrossRef]
- Schüler, R.; Joshi, S.P.; Schulte, K. Damage detection in CFRP by electrical conductivity mapping. Compos. Sci. Technol. 2001, 61, 921–930. [Google Scholar] [CrossRef]
- Data Sheet 668 Dessin 8HB; Sattler PRO-TEX GmbH: Gössendorf, Austria, 31 December 2016.
- Data Sheet Muriel®-Sensor; LeMur S.r.l.: Ala, Italy, 9 February 2012.
- Data sheet Shieldex® 110/34 Dtex 2-Ply HC; Statex: Bremen, Germany, 31 December 2013.
- Data Sheet Brildor PB40; Brildor, S.L.: Alicante, Spain, 2 December 2014.
- Grote, K.-H.; Feldhusen, J. Dubbel Taschenbuch Für Den Maschinenbau, 22th ed.; Springer: Heidelberg/Berlin, Germany, 2007; pp. V4–V5. [Google Scholar]
- Cherif, C. Textile Materials for Lightweight Constructions; Springer: Heidelberg/Berlin, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2016; pp. 347–360. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. DIN EN ISO 1421; Beuth Verlag GmbH: Berlin, Germany, 2016. [Google Scholar]
- ASTM Intternational. ASTM D7747/D7747M; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- DIN Deutsches Institut für Normung e.V. DIN EN ISO 2062; Beuth Verlag GmbH: Berlin, Germany, 2009. [Google Scholar]
- Keil, S. Dehnungsmessstreifen, 2nd ed.; Springer Vieweg: Wiesbaden, Germany, 2017; p. 13. [Google Scholar]
Y1 | Y2 | |
---|---|---|
Manufacturer | LeMur S.p.A | Statex Produktions- und Vertriebs GmbH |
Type | Muriel Sensor 4000/1 dtex | Shieldex® 110/34 dtex 2-ply HC |
Base material | silicone | polyamide |
Conductive material | carbon black | silver |
Type of conductive modification | filled | coated |
Yarn count | 4000 dtex | 272 dtex |
Electrical resistance | <200 Ω/m | 500 ± 100 Ω/m |
Welding Parameter | Value |
---|---|
Welding time [s] | 3 |
Welding pressure [bar] | 3 |
Welding power [% of max *] | 38 |
Cooling time [s] | 3 |
Cooling pressure [bar] | 3 |
Yarn Tensile Test | Shear Test of Welded Membrane | |
---|---|---|
Basic standard | DIN EN ISO 2062 | ASTM D7747/D7747M |
Measurement device (mech.) | Zwick Z2.5N1S | Zwick Zmart.Pro |
Measurement device (el.) | Fluke 8846A | |
Test specimen | thread, l = 100 mm | welded membrane sample according to ASTM D7747/D7747M, embroidered sensor in the weld seam |
Input parameter | elongation (tension) | |
Indicator | electrical resistance | |
Load regime | elongations between 2–16%, ten cycles each with intermediate relief, elongation increased in 2% increments | equivalent to yarn tension test, plus cyclic elongations between 20–40%, elongation increased in 5% increments |
Testing speed | 20 mm/min | 305 mm/min |
preload force | 0.5 N | 5 N |
Number of Sensor Loops | n | 10 |
---|---|---|
Length of the sensor loops | l [mm] | 18 |
Width of the sensor loops | a [mm] | 4 |
Width of the sensor | b [mm] | 40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winger, H.; Döbrich, O.; Saeed, H.; Gereke, T.; Nocke, A.; Cherif, C. Monitoring the Joint Area of Composite Membrane Materials. Appl. Sci. 2019, 9, 2068. https://doi.org/10.3390/app9102068
Winger H, Döbrich O, Saeed H, Gereke T, Nocke A, Cherif C. Monitoring the Joint Area of Composite Membrane Materials. Applied Sciences. 2019; 9(10):2068. https://doi.org/10.3390/app9102068
Chicago/Turabian StyleWinger, Hans, Oliver Döbrich, Hassan Saeed, Thomas Gereke, Andreas Nocke, and Chokri Cherif. 2019. "Monitoring the Joint Area of Composite Membrane Materials" Applied Sciences 9, no. 10: 2068. https://doi.org/10.3390/app9102068
APA StyleWinger, H., Döbrich, O., Saeed, H., Gereke, T., Nocke, A., & Cherif, C. (2019). Monitoring the Joint Area of Composite Membrane Materials. Applied Sciences, 9(10), 2068. https://doi.org/10.3390/app9102068