Toward Long-Term Implantable Glucose Biosensors for Clinical Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subcutaneous Continuous Glucose Monitoring
2.2. Accuracy
2.2.1. Evaluation
2.2.2. Performance Requirement of iCGM
2.3. Calibration
2.3.1. Calibration to Blood Glucose
2.3.2. Factory Calibration
2.4. Biocompatibility
3. Continuous Glucose Monitoring Systems
3.1. History
3.2. Semi-Implantalbe CGMS with Electrochemical Sensors
3.3. Fully-Implantalbe CGMS with Fluorescence Sensors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016.
- Hirsch, I.B. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care 2015, 38, 1610–1614. [Google Scholar] [CrossRef]
- Heo, Y.J.; Takeuchi, S. Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Adv. Healthc. Mater. 2013, 2, 43–56. [Google Scholar] [CrossRef]
- Rodbard, D. Interpretation of continuous glucose monitoring data: Glycemic variability and quality of glycemic control. Diabetes Technol. Ther. 2009, 11, S55–S67. [Google Scholar] [CrossRef] [PubMed]
- Rodbard, D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol. Ther. 2009, 11, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroynalysis 2001, 13, 983–988. [Google Scholar] [CrossRef]
- Rodbard, D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol. Ther. 2016, 18, S2–S3. [Google Scholar] [CrossRef] [PubMed]
- Rodbard, D. Continuous glucose monitoring: A review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol. Ther. 2017, 19, S25–S37. [Google Scholar] [CrossRef]
- Heinemann, L. Continuous Glucose Monitoring (CGM) or Blood Glucose Monitoring (BGM): Interactions and Implications. J. Diabetes Sci. Technol. 2018, 12, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Ajjan, R.A. How can we realize the clinical benefits of continuous glucose monitoring? Diabetes Technol. Ther. 2017, 19, S27–S36. [Google Scholar] [CrossRef]
- Murata, T.; Nirengi, S.; Kawaguchi, Y.; Sukino, S.; Watanabe, T.; Sakane, N. Accuracy of a novel “factory-calibrated” continuous glucose monitoring device in normal glucose levels: a pilot study. Biomed. Sci. 2017, 3, 109–113. [Google Scholar] [CrossRef]
- Garg, S.K.; Akturk, H.K. Flash glucose monitoring: the future is here. Diabetes Technol. Ther. 2017, 19, S1–S3. [Google Scholar] [CrossRef]
- Rebrin, K.; Steil, G.M. Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol. Ther. 2000, 2, 461–472. [Google Scholar] [CrossRef]
- Koschinsky, T.; Jungheim, K.; Heinemann, L. Glucose sensors and the alternate site testing-like phenomenon: relationship between rapid blood glucose changes and glucose sensor signals. Diabetes Technol. Ther. 2003, 5, 829–842. [Google Scholar] [CrossRef]
- Sinha, M.; McKeon, K.M.; Parker, S.; Goergen, L.G.; Zheng, H.; El-Khatib, F.H.; Russell, S.J. A comparison of time delay in three continuous glucose monitors for adolescents and adults. J. Diabetes Sci. Technol. 2017, 11, 1132–1137. [Google Scholar] [CrossRef]
- Bailey, T.; Bode, B.W.; Christiansen, M.P.; Klaff, L.J.; Alva, S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther. 2015, 17, 787–794. [Google Scholar] [CrossRef]
- Shah, V.N.; Laffel, L.M.; Wadwa, R.P.; Garg, S.K. Performance of a factory-calibrated real-time continuous glucose monitoring system utilizing an automated sensor applicator. Diabetes Technol. Ther. 2018, 20, 428–433. [Google Scholar] [CrossRef]
- Schnell, O.; Barnard, K.; Bergenstal, R.; Bosi, E.; Garg, S.; Guerci, B.; Haak, T.; Hirsch, I.B.; Ji, L.; Joshi, S.R.; et al. Role of continuous glucose monitoring in clinical trials: recommendations on reporting. Diabetes Technol. Ther. 2017, 19, 391–399. [Google Scholar] [CrossRef]
- Freckmann, G.; Schlüter, S.; Heinemann, L.; Diabetes Technology Working Group of the German Diabetes Society. Replacement of Blood Glucose Measurements by Measurements With Systems for Real-Time Continuous Glucose Monitoring (rtCGM) or CGM With Intermittent Scanning (iscCGM): A German View. J. Diabetes Sci. Technol. 2017, 11, 653–656. [Google Scholar] [CrossRef] [Green Version]
- Hoss, U.; Budiman, E.S. Factory-calibrated continuous glucose sensors: the science behind the technology. Diabetes Technol. Ther. 2017, 19, S44–S50. [Google Scholar] [CrossRef]
- Senseonics, Inc. Senseonics Proposed Summary of Safety and Effectiveness Data (SSED); U S Food and Drug Administration: Silver Spring, MD, USA, 2018.
- Clarke, W.L.; Cox, D.; Gonder-Frederick, L.A.; Carter, W.; Pohl, S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987, 10, 622–628. [Google Scholar] [CrossRef]
- Kovatchev, B.P.; Gonder-Frederick, L.A.; Cox, D.J.; Clarke, W.L. Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose–error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care 2004, 27, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Evaluation of Automatic Class III Designation for Dexcom G6 Continuous Glucose Monitoring System Decision Summary, DEN170088; U S Food and Drug Administration: Silver Spring, MD, USA, 2018.
- Welsh, J.B. Role of continuous glucose monitoring in insulin-requiring patients with diabetes. Diabetes Technol. Ther. 2018, 20, S2–S42. [Google Scholar] [CrossRef] [PubMed]
- Castle, J.R.; DeVries, J.H.; Kovatchev, B. Future of automated insulin delivery systems. Diabetes Technol. Ther. 2017, 19, S67–S72. [Google Scholar] [CrossRef] [PubMed]
- Kropff, J.; DeVries, J.H. Continuous glucose monitoring, future products, and update on worldwide artificial pancreas projects. Diabetes Technol. Ther. 2016, 18, S2–S53. [Google Scholar] [CrossRef]
- Approval for Adding the Upper Arm as An Alternate Insertion Site for the Guardian Sensor (3); U S Food and Drug Administration: Silver Spring, MD, USA, 2018.
- Wadwa, R.P.; Laffel, L.M.; Shah, V.N.; Garg, S.K. Accuracy of a factory-calibrated, real-time continuous glucose monitoring system during 10 days of use in youth and adults with diabetes. Diabetes Technol. Ther. 2018, 20, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics 2017, 6, 65. [Google Scholar] [CrossRef]
- Heo, Y.J.; Takahashi, M.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Nanoreplica moulding of polyacrylamide hydrogels. Micro Nano Lett. 2012, 7, 1108–1111. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, J.; Wang, F.; Xiong, Y.; Wu, Y.; Wang, Q.; Weng, J.; Zhang, Z.; Chen, W.; Liu, S. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly (acrylic acid)-functionalization is superior to PEGylation. ACS Nano 2016, 10, 3267–3281. [Google Scholar] [CrossRef]
- Jeong, J.; Cho, H.J.; Choi, M.; Lee, W.S.; Chung, B.H.; Lee, J.S. In vivo toxicity assessment of angiogenesis and the live distribution of nano-graphene oxide and its PEGylated derivatives using the developing zebrafish embryo. Carbon 2015, 93, 431–440. [Google Scholar] [CrossRef]
- Chu, M.K.; Gordijo, C.R.; Li, J.; Abbasi, A.Z.; Giacca, A.; Plettenburg, O.; Wu, X.Y. In vivo performance and biocompatibility of a subcutaneous implant for real-time glucose-responsive insulin delivery. Diabetes Technol. Ther. 2015, 17, 255–267. [Google Scholar] [CrossRef]
- Onuki, Y.; Bhardwaj, U.; Papadimitrakopoulos, F.; Burgess, D.J. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2008, 2, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, M.P.; Klaff, L.J.; Brazg, R.; Chang, A.R.; Levy, C.J.; Lam, D.; Denham, D.S.; Atiee, G.; Bode, B.W.; Walters, S.J.; et al. A prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II. Diabetes Technol. Ther. 2018, 20, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Gisin, V.; Chan, A.; Welsh, J.B. Manufacturing process changes and reduced skin irritations of an adhesive patch used for continuous glucose monitoring devices. J. Diabetes Sci. Technol. 2018, 12, 725–726. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Szadkowska, A.; Gawrecki, A.; Michalak, A.; Zozulińska-Ziółkiewicz, D.; Fendler, W.; Młynarski, W. Flash glucose measurements in children with type 1 diabetes in real-life settings: to trust or not to trust? Diabetes Technol. Ther. 2018, 20, 17–24. [Google Scholar] [CrossRef]
- Shichiri, M.; Yamasaki, Y.; Kawamori, R.; Hakui, N.; Abe, H. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 1982, 320, 1129–1131. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Kushner, T.; Messer, L.H.; Wadwa, R.P.; Sankaranarayanan, S. Factory-Calibrated Continuous Glucose Monitoring: How and Why It Works, and the Dangers of Reuse Beyond Approved Duration of Wear. Diabetes Technol. Ther. 2019, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Akturk, H.K.; Garg, S. Technological advances shaping diabetes care. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 84–89. [Google Scholar] [CrossRef]
- Dehennis, A.; Mortellaro, M.A.; Ioacara, S. Multisite study of an implanted continuous glucose sensor over 90 days in patients with diabetes mellitus. J. Diabetes Sci. Technol. 2015, 9, 951–956. [Google Scholar] [CrossRef]
- Deiss, D.; Szadkowska, A.; Gordon, D.; Mallipedhi, A.; Schütz-Fuhrmann, I.; Aguilera, E.; Ringsell, C.; De Block, C.; Irace, C. Clinical Practice Recommendations on the Routine Use of Eversense, the First Long-Term Implantable Continuous Glucose Monitoring System. Diabetes Technol. Ther. 2019, 21, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Nagasaki, T.; Hamachi, I.; Shinkai, S. Sugar sensing utilizing aggregation properties of boronic-acid-appended porphyrins and metalloporphyrins. J. Chem. Soc. Perkin 2 1994, 5, 975–981. [Google Scholar] [CrossRef]
- Shibata, H.; Heo, Y.J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Natl. Acad. Sci. USA 2010, 107, 17894–17898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, Y.J.; Shibata, H.; Okitsu, T.; Kawanishi, T.; Takeuchi, S. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Natl. Acad. Sci. USA 2011, 108, 13399–13403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vettoretti, M.; Cappon, G.; Acciaroli, G.; Facchinetti, A.; Sparacino, G. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications. J. Diabetes Sci. Technol. 2018, 12, 1064–1071. [Google Scholar] [CrossRef]
Overall Range | <70 mg/dL | 70–180 mg/dL | >180 mg/dL |
---|---|---|---|
within ±20% error in the lower one-sided 95%, must exceed 87% | within ±15 mg/dL errors in the lower one-sided 95%, must exceed 85% | within ±15% error in the lower one-sided 95%, must exceed 70% | within ±15% error in the lower one-sided 95%, must exceed 80% |
within ±40 mg/dL error in the lower one-sided 95%, must exceed 98% | within ±40% error in the lower one-sided 95%, must exceed 99% | within ±40% error in the lower one-sided 95%, must exceed 99% | |
no corresponding blood glucose value shall read above 180 mg/dL. | no corresponding blood glucose value shall read less than 70 mg/dL. |
Company | Medtronic | Dexcom | Abbott | |||
---|---|---|---|---|---|---|
Product | MiniMed 670G Guardian Sensor 3 | G4 Platinum | G4 Platinum with SW 505, G5 Mobile | G6 Mobile | FreeStyle Libre Pro | FreeStyle Libre |
FDA approval | September 2016 | October 2012 | October 2014 | March 2018 | September 2016 | September 2017 |
Accuracy (MARD %) | 10.55% (abdomen, age 14+) February 2018 9.09% (upper arm, age 14+) | 13.3% (age 18+) 17.4% (age 2+) | 9% (age 18+) 10.4% (age 2+) | 9% (age 18+) | 12.1% (age 18+) | 9.7% (age 18+) |
FDA approval for non-adjunctive device | No (Class III) Requires fingerstick test for diabetes treatment decisions | No (Class III) Requires fingerstick test for diabetes treatment decisions | No (Class III) Requires fingerstick test for diabetes treatment decisions | Yes (Class II) Replaces fingersticks for diabetes treatment decisions | No (Class III) Aids in the detection of glucose level excursions (Professional use only) | Yes (Class III) Replaces fingersticks for diabetes treatment decisions |
Sensor size | 9.5 mm long (90 degree insertion) | 12 mm long (45 degree insertion) | 12 mm long (45 degree insertion) | Not disclosed | 5 mm long (90 degree insertion) | 5 mm long (90 degree insertion) |
Calibration frequency per day | Min: 2, (3–4 Recommended) | 2 (every 12 h) | 2 (every 12 h) | 0 (factory calibration) | 0 (factory calibration) | 0 (factory calibration) |
Sensor | Glucose oxidase | Glucose oxidase | Glucose oxidase | Glucose oxidase | Glucose oxidase | Glucose oxidase |
Sensor lifespan | 7 days (including 2 h warm-up) | 7 days (including 2 h warm-up) | 7 days (including 2 h warm-up) | 10 days (including 2 h warm-up) | 14 days | 10 days (including 12 h warm-up) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, Y.J.; Kim, S.-H. Toward Long-Term Implantable Glucose Biosensors for Clinical Use. Appl. Sci. 2019, 9, 2158. https://doi.org/10.3390/app9102158
Heo YJ, Kim S-H. Toward Long-Term Implantable Glucose Biosensors for Clinical Use. Applied Sciences. 2019; 9(10):2158. https://doi.org/10.3390/app9102158
Chicago/Turabian StyleHeo, Yun Jung, and Seong-Hyok Kim. 2019. "Toward Long-Term Implantable Glucose Biosensors for Clinical Use" Applied Sciences 9, no. 10: 2158. https://doi.org/10.3390/app9102158
APA StyleHeo, Y. J., & Kim, S. -H. (2019). Toward Long-Term Implantable Glucose Biosensors for Clinical Use. Applied Sciences, 9(10), 2158. https://doi.org/10.3390/app9102158