Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of a Wireless Carotid Wearable Ultrasound Doppler System
2.2. Experimental Setup
3. Results and Discussion
3.1. Prototype of a Wireless Carotid Wearable Ultrasound Doppler System
3.2. Phantom Study
3.3. In Vivo Study
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rankin, R.N.; Hutton, L.; D’Alotto, C. Carotid Doppler evaluation in cerebrovascular disease. Can. Med. Assoc. J. 1984, 130, 672–673. [Google Scholar] [PubMed]
- Johnston, K.W.; deMorais, D.; Kassam, M.; Brown, P.M. Cerebrovascular assessment using a Doppler carotid scanner and real-time frequency analysis. J. Clin. Ultrasound. 1981, 9, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Sanguigni, V.; Gallù, M.; Strano, A. Incidence of carotid artery atherosclerosis in patients with coronary artery disease. Angiology 1993, 44, 34–38. [Google Scholar] [CrossRef]
- Kazum, S.; Eisen, A.; Lev, E.I.; Iakobishvili, Z.; Solodky, A.; Hasdai, D.; Kornowski, R.; Mager, A. Prevalence of Carotid Artery Disease among Ambulatory Patients with Coronary Artery Disease. Isr. Med. Assoc. J. 2016, 18, 100–103. [Google Scholar]
- Keller, H.; Meier, W.; Yonekawa, Y.; Kumpe, D. Noninavasive angiography for the diagnosis of carotid artery disease using Doppler ultrasound (carotid artery Doppler). Stroke 1976, 7, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Lindegaard, K.F.; Bakke, S.J.; Grolimund, P.; Aaslid, R.; Huber, P.; Nornes, H. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J. Neurosurg. 1985, 63, 890–898. [Google Scholar] [CrossRef]
- Bishop, C.C.; Powell, S.; Rutt, D.; Browse, N.L. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: A validation study. Stroke 1986, 17, 913–915. [Google Scholar] [CrossRef]
- Garth, K.E.; Carroll, B.A.; Sommer, F.G.; Oppenheimer, D.A. Duplex ultrasound scanning of the carotid arteries with velocity spectrum analysis. Radiology 1983, 147, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.M.; Johnston, K.W.; Kassam, M.; Cobbold, R.S. A critical study of ultrasound Doppler spectral analysis for detecting carotid disease. Ultrasound Med. Biol. 1982, 8, 515–523. [Google Scholar] [CrossRef]
- Sheldon, C.D.; Murie, J.A.; Quin, R.O. Ultrasonic doppler spectral broadening in the diagnosis of internal carotid artery stenosis. Ultrasound Med. Biol. 1983, 9, 575–580. [Google Scholar] [CrossRef]
- Jacobs, N.M.; Grant, E.G.; Schellinger, D.; Byrd, M.C.; Richardson, J.D.; Cohan, S.L. Duplex carotid sonography: Criteria for stenosis, accuracy, and pitfalls. Radiology 1985, 154, 385–391. [Google Scholar] [CrossRef]
- Frauchiger, B.; Schmid, H.P.; Roedel, C.; Moosmann, P.; Staub, D. Comparison of carotid arterial resistive indices with intima-media thickness as sonographic markers of atherosclerosis. Stroke 2001, 32, 836–841. [Google Scholar] [CrossRef]
- Staub, D.; Meyerhans, A.; Bundi, B.; Schmid, H.P.; Frauchiger, B. Prediction of cardiovascular morbidity and mortality: Comparison of the internal carotid artery resistive index with the common carotid artery intima-media thickness. Stroke 2006, 37, 800–805. [Google Scholar] [CrossRef]
- Bude, R.O.; Rubin, J.M. Relationship between the resistive index and vascular compliance and resistance. Radiology 1999, 211, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.C.; Lemmen, L.J. Traumatic internal carotid artery thrombosis secondary to nonpenetrating injuries to the neck; a problem in the differential diagnosis of craniocerebral trauma. J. Neurosurg. 1952, 9, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Pitner, S.E. Carotid thrombosis due to intraoral trauma. An unusual complication of a common childhood accident. N. Engl. J. Med. 1966, 7, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Bor-Seng-Shu, E.; Hirsch, R.; Teixeira, M.J.; De Andrade, A.F.; Marino, R., Jr. Cerebral hemodynamic changes gauged by transcranial Doppler ultrasonography in patients with posttraumatic brain swelling treated by surgical decompression. J. Neurosurg. 2006, 104, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunekawa, T.; Sawada, M.; Kato, T.; Motoji, Y.; Kinoshita, T.; Hirakawa, A.; Okawa, Y.; Tomita, S. The prevalence and distribution of occlusive lesions of the cerebral arteries in patients undergoing coronary artery bypass graft surgery. Semin. Thorac. Cardiovasc Surg. 2018, 30, 413–420. [Google Scholar] [CrossRef]
- Pinho-Gomes, A.C.; Taggart, D.P. Coronary artery bypass grafting for left main disease and the risk of stroke: Incidence, aetiology and prevention. Surgeon 2017, 15, 155–160. [Google Scholar] [CrossRef]
- Awad, E.; Asada, H.H. The Doppler Necklace: A wearable and noninvasive ultrasound sensor for continuous monitoring of blood flow in the common carotid artery. In Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. No.99CH37015), Atlanta, GA, USA, 13–16 October 1999; Volume 2, p. 795. [Google Scholar] [CrossRef]
- Awad, E. Design of a Wearable Ultrasound Doppler Sensor to Monitor Blood Flow in the Common Carotid Artery. Master’s Thesis, American University of Beirut, Lebanon, MA, USA, June 1999. [Google Scholar]
- Pietrangelo, S.J. An Electronically Steered, Wearable Transcranial Doppler Ultrasound System; MIT: Lebanon, MA, USA, 2013. [Google Scholar]
- Huang, C.C.; Lee, P.Y.; Chen, P.Y.; Liu, T.Y. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2012, 59, 182–188. [Google Scholar] [CrossRef]
- Shomaji, S.; Basak, A.; Mandai, S.; Karam, R.; Bhunia, S. A wearable carotid ultrasound assembly for early detection of cardiovascular diseases. In Proceedings of the 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT), Cancun, Mexico, 11–19 November 2016; pp. 17–20. [Google Scholar]
- Taylor, K.J.; Holland, S. Doppler US. Part I. Basic principles, instrumentation, and pitfalls. Radiology 1990, 174, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Quistgaard, J.U. Signal acquisition and processing in medical diagnostic ultrasound. IEEE Signal. Process. Mag. 1997, 14, 67–74. [Google Scholar] [CrossRef]
- Vaitkus, P.J.; Cobbold, R.S. A comparative study and assessment of Doppler ultrasound spectral estimation techniques. Part I: Estimation methods. Ultrasound Med. Biol. 1988, 14, 661–672. [Google Scholar] [CrossRef]
- Vaitkus, P.J.; Cobbold, R.S.; Johnston, K.W. A comparative study and assessment of Doppler ultrasound spectral estimation techniques. Part II: Methods and results. Ultrasound Med. Biol. 1988, 14, 673–688. [Google Scholar] [CrossRef]
- Deng, G. A generalized unsharp masking algorithm. IEEE Trans. Image Process. 2011, 20, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
Parameter | Accuvix V10 (n = 10) | Wearable Doppler Prototype (n = 10) | p-Value |
---|---|---|---|
PSV [cm/s] | 131.49 ± 3.97 | 131 ± 2.06 | 0.64 |
RI | 0.75 ± 0.02 | 0.74 ± 0.02 | 0.70 |
Parameter | Left (n = 10) | Right (n = 10) |
---|---|---|
PSV [cm/s] | 137.09 ± 4.82 | 138.21 ± 6.73 |
RI | 0.83 ± 0.01 | 0.81 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, I.; Yoon, J.; Kang, J.; Kim, M.; Jang, W.S.; Shin, N.-Y.; Yoo, Y. Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results. Appl. Sci. 2019, 9, 2202. https://doi.org/10.3390/app9112202
Song I, Yoon J, Kang J, Kim M, Jang WS, Shin N-Y, Yoo Y. Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results. Applied Sciences. 2019; 9(11):2202. https://doi.org/10.3390/app9112202
Chicago/Turabian StyleSong, Ilseob, Jongmin Yoon, Jinbum Kang, Min Kim, Won Seuk Jang, Na-Young Shin, and Yangmo Yoo. 2019. "Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results" Applied Sciences 9, no. 11: 2202. https://doi.org/10.3390/app9112202
APA StyleSong, I., Yoon, J., Kang, J., Kim, M., Jang, W. S., Shin, N. -Y., & Yoo, Y. (2019). Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results. Applied Sciences, 9(11), 2202. https://doi.org/10.3390/app9112202