Compute Optimization of Petri Net Controllers Using the Algebraic Method
Abstract
:Featured Application
Abstract
1. Introduction
2. Preliminaries
2.1. Petri Nets
2.2. Theory of Regions
3. Computationally Improved Optimal Control Policy
3.1. Supervisory Control Problem
3.2. Calculation of the Linear System
4. Example
5. Comparison with Previous Approaches
5.1. FMS Example 1
5.2. Huang and Pan Example 2
5.3. Ghaffari et al. Example 3
6. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DES | Discrete event systems |
FMS | Flexible manufacturing system |
FSTP | Forbidden state transition problem |
GMEC | Generalized mutual exclusion constraint |
LSP | Linear system of paths |
MTSI | Marking/transition separation instance |
PN | Petri net |
RG | Reachability graph |
TR | Theory of regions |
VG | Virtual graph |
References
- Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [Google Scholar] [CrossRef]
- Ramadge, P.J.; Wonham, W.M. Modular supervisory control of discrete event systems. In Analysis and Optimization of Systems; Springer: Berlin/Heidelberg, Germany, 1986; pp. 202–214. [Google Scholar]
- Ramadge, P.J.; Wonham, W.M. Supervisory control of a class of discrete event processes. SIAM J. Control Optim. 1987, 25, 206–230. [Google Scholar] [CrossRef]
- Uzam, M.; Wonham, W.M. A hybrid approach to supervisory control of discrete event systems coupling RW supervisors to Petri nets. Int. J. Adv. Manuf. Technol. 2006, 28, 747–760. [Google Scholar] [CrossRef]
- Dideban, A.; Alla, H. Determination of minimal sets of control places for safe Petri nets. In Proceedings of the ACC07 American Control Conference, New York, NY, USA, 11–13 July 2007; pp. 4975–4980. [Google Scholar]
- Dideban, A.; Alla, H. Reduction of constraints for controller synthesis based on safe Petri nets. Automatica 2008, 44, 1697–1706. [Google Scholar] [CrossRef]
- Liao, H.; Wang, Y.; Cho, H.K.; Stanley, J.; Kelly, T.; Lafortune, S.; Reveliotis, S. Concurrency bugs in multithreaded software: Modeling and analysis using Petri nets. Discret. Event Dyn. Syst. 2013, 23, 157–195. [Google Scholar] [CrossRef]
- Nazeem, A.; Reveliotis, S.; Wang, Y.; Lafortune, S. Designing compact and maximally permissive deadlock avoidance policies for complex resource allocation systems through classification theory: The linear case. IEEE Trans. Autom. Control 2011, 56, 1818–1833. [Google Scholar] [CrossRef]
- Ghaffari, A.; Rezg, N.; Xie, X. Algebraic and geometric characterization of Petri net controllers using the theory of regions. In Proceedings of the Sixth International Workshop on Discrete Event Systems, Zaragoza, Spain, 2–4 October 2002; pp. 219–224. [Google Scholar]
- Ghaffari, A.; Rezg, N.; Xie, X. Design of a live and maximally permissive Petri net controller using the theory of regions. IEEE Trans. Robot. Autom. 2003, 19, 137–141. [Google Scholar] [CrossRef]
- Ghaffari, A.; Rezg, N.; Xie, X. Live and maximally permissive controller synthesis using theory of regions. In Synthesis and Control of Discrete Event Systems; Springer: New York, NY, USA, 2002; pp. 155–166. [Google Scholar]
- Ghaffari, A.; Rezg, N.; Xie, X. Feedback control logic for forbidden-state problems of marked graphs: Application to a real manufacturing system. IEEE Trans. Autom. Control 2003, 48, 18–29. [Google Scholar] [CrossRef]
- Ye, J.; Zhou, M.; Li, Z.; Al-Ahmari, A. Structural decomposition and decentralized control of Petri nets. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1360–1369. [Google Scholar] [CrossRef]
- Balduzzi, F.; Giua, A.; Menga, G. First-order hybrid Petri nets: A model for optimization and control. IEEE Trans. Robot. Autom. 2000, 16, 382–399. [Google Scholar] [CrossRef]
- Cavone, G.; Dotoli, M.; Seatzu, C. Management of intermodal freight terminals by first-order hybrid Petri nets. IEEE Robot. Autom. Lett. 2015, 1, 2–9. [Google Scholar] [CrossRef]
- Zhou, M. (Ed.) Petri Nets in Flexible and Agile Automation; Springer Science & Business Media: New York, NY, USA, 2012; Volume 310. [Google Scholar]
- Chen, Y.; Li, Z.; Khalgui, M.; Mosbahi, O. Design of a maximally permissive liveness-enforcing Petri net supervisor for flexible manufacturing systems. IEEE Trans. Autom. Sci. Eng. 2011, 8, 374–393. [Google Scholar] [CrossRef]
- Zhao, M.; Uzam, M.; Hou, Y. A divide-and-conquer method for the synthesis of non-blocking supervisors for flexible manufacturing systems. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), Madison, WI, USA, 22 August 2014; pp. 455–460. [Google Scholar]
- Uzam, M.; Li, Z.; Zhou, M. Identification and elimination of redundant control places in Petri net based liveness enforcing supervisors of FMS. Int. J. Adv. Manuf. Technol. 2007, 35, 150–168. [Google Scholar] [CrossRef]
- Uzam, M.; Zhou, M. An improved iterative synthesis method for liveness enforcing supervisors of flexible manufacturing systems. Int. J. Prod. Res. 2006, 44, 1987–2030. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, M. On controllability of dependent siphons for deadlock prevention in generalized Petri nets. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2008, 38, 369–384. [Google Scholar]
- Huang, Y.S.; Pan, Y.L. An improved maximally permissive deadlock prevention policy based on the theory of regions and reduction approach. IET Control Theory Appl. 2011, 5, 1069–1078. [Google Scholar] [CrossRef]
- Uzam, M.; Gelen, G. The real-time supervisory control of an experimental manufacturing system based on a hybrid method. Control Eng. Pract. 2009, 17, 1174–1189. [Google Scholar] [CrossRef]
- Park, J.; Reveliotis, S.A. Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings. IEEE Trans. Autom. Control 2001, 46, 1572–1583. [Google Scholar] [CrossRef]
- Rezig, S.; Achour, Z.; Rezg, N. Control synthesis based on reachability graph with minimal cuts: Application to a flexible manufacturing system. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–6. [Google Scholar]
- Rezig, S.; Achour, Z.; Rezg, N.; Kammoun, M.A. Optimal control synthesis for a flexible manufacturing system based on minimal cuts. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Malaysia, 9–12 December 2014; pp. 254–258. [Google Scholar]
- Rezig, S.; Achour, Z.; Rezg, N. Theory of Regions for Control Synthesis without Computing Reachability Graph. Appl. Sci. 2017, 7, 270. [Google Scholar] [CrossRef]
- Rezig, S.; Achour, Z.; Rezg, N.; Kammoun, M.A. Supervisory control based on minimal cuts and Petri net sub-controllers coordination. Int. J. Syst. Sci. 2016, 47, 3425–3435. [Google Scholar] [CrossRef]
- Rezig, S.; Achour, Z.; Rezg, N. Control Synthesis Based On Theory of Regions with Minimal Reachability Graph Knowledge. IFAC-PapersOnLine 2016, 49, 1383–1388. [Google Scholar] [CrossRef]
- Giua, A.; DiCesare, F.; Silva, M. Generalized mutual exclusion contraints on nets with uncontrollable transitions. In Proceedings of the 1992 IEEE International Conference on Systems, Man and Cybernetics, Chicago, IL, USA, 18–21 October 1992; pp. 974–979. [Google Scholar]
Sequence of Transitions | Sequence of Transitions | ||
---|---|---|---|
Marking No. | Path | Classification | |
---|---|---|---|
Additional Control Places | ||
---|---|---|
3 | ||
1 |
Control Criteria | No. of PN Controllers | No. of Markings in the RG | Maximally Permissive | No. of MTSI | Computation Time (ms) | Approach |
---|---|---|---|---|---|---|
2 | 13 | Yes | 7 | 7190 | Minimal Cuts | |
2 | 13 | Yes | 7 | 7213 | Canonic markings | |
2 | 0 | Yes | 7 | 3560 | Without RG |
Method | Additional Control Places | ||
---|---|---|---|
1 | |||
1 | |||
1 | |||
1 | |||
3 | |||
1 |
Control Criteria | No. of PN Controllers | No. of Markings in the RG | Maximally Permissive | No. of MTSI | Computation Time (ms) | Approach |
---|---|---|---|---|---|---|
3 | 20 | Yes | 10 | 13,245 | Minimal Cuts | |
4 | 20 | Yes | 10 | 13,400 | Canonic markings | |
3 | 27 | Yes | 4 | 15,500 | RG based | |
3 | 0 | Yes | 4 | 6700 | Without RG |
Method | Additional Control Places | ||
---|---|---|---|
0 | |||
0 | |||
0 | |||
1 | |||
1 | |||
1 | |||
1 | |||
2 | |||
3 | |||
2 | |||
3 | |||
4 | |||
3 |
Control Criteria | No. of PN Controllers | No. of Markings in the RG | Maximally Permissive | No. of MTSI | Computation Time (ms) | Approach |
---|---|---|---|---|---|---|
4 | 120 | Yes | 12 | 14,450 | Minimal Cuts | |
3 | 215 | Yes | 7 | 29,150 | RG based | |
3 | 0 | Yes | 7 | 9960 | Without RG |
Method | Additional Control Places | ||
---|---|---|---|
3 | |||
3 | |||
3 | |||
2 | |||
2 | |||
2 | |||
3 | |||
3 | |||
3 | |||
4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezig, S.; Turki, S.; Rezg, N. Compute Optimization of Petri Net Controllers Using the Algebraic Method. Appl. Sci. 2019, 9, 2633. https://doi.org/10.3390/app9132633
Rezig S, Turki S, Rezg N. Compute Optimization of Petri Net Controllers Using the Algebraic Method. Applied Sciences. 2019; 9(13):2633. https://doi.org/10.3390/app9132633
Chicago/Turabian StyleRezig, Sadok, Sadok Turki, and Nidhal Rezg. 2019. "Compute Optimization of Petri Net Controllers Using the Algebraic Method" Applied Sciences 9, no. 13: 2633. https://doi.org/10.3390/app9132633
APA StyleRezig, S., Turki, S., & Rezg, N. (2019). Compute Optimization of Petri Net Controllers Using the Algebraic Method. Applied Sciences, 9(13), 2633. https://doi.org/10.3390/app9132633