Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Schmid, G. (Ed.) Nanoparticles: From Theory to Application, 2nd ed.; Completely Revised and Updated Edition; Wiley-VCH: Hoboken, NJ, USA, 2010; ISBN 978-3-527-32589-4. [Google Scholar]
- Bönnemann, H.; Nagabhushana, K.S. Metal nanoclusters: Synthesis and strategies for their size control. In Metal Nanoclusters in Catalysis and Materials Science; Corain, B., Schmid, G., Toshima, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 21–48. ISBN 978-0-444-53057-8. [Google Scholar]
- Zecca, M.; Centomo, P.; Corain, B. Metal nanoclusters supported on cross-linked functional polymers: A class of emerging metal catalysts. In Metal Nanoclusters in Catalysis and Materials Science; Corain, B., Schmid, G., Toshima, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 201–232. ISBN 978-0-444-53057-8. [Google Scholar]
- Corain, B.; Jerabek, K.; Centomo, P.; Canton, P. Generation of size-controlled pd0 nanoclusters inside nanoporous domains of gel-type resins: Diverse and convergent evidence that supports a strategy of template-controlled synthesis. Angew. Chem. Int. Ed. 2004, 43, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Corain, B.; Burato, C.; Centomo, P.; Lora, S.; Meyer-Zaika, W.; Schmid, G. Generation of size-controlled gold(0) and palladium(0) nanoclusters inside the nanoporous domains of gel-type functional resins: Part I: Synthetic aspects and first catalytic data in the liquid phase. J. Mol. Catal. A Chem. 2005, 225, 189–195. [Google Scholar] [CrossRef]
- Centomo, P.; Canton, P.; Ferroni, M.; Zecca, M. Template controlled synthesis of monometallic zerovalent metal nanoclusters inside cross-linked polymer frameworks: The effect of a single matrix on the size of different metal nanoparticles. New J. Chem. 2010, 34, 2956. [Google Scholar] [CrossRef]
- Burato, C.; Centomo, P.; Pace, G.; Favaro, M.; Prati, L.; Corain, B. Generation of size-controlled palladium(0) and gold(0) nanoclusters inside the nanoporous domains of gel-type functional resins: Part II: Prospects for oxidation catalysis in the liquid phase. J. Mol. Catal. A Chem. 2005, 238, 26–34. [Google Scholar] [CrossRef]
- Centomo, P.; Jeřábek, K.; Canova, D.; Zoleo, A.; Maniero, A.L.; Sassi, A.; Canton, P.; Corain, B.; Zecca, M. Highly hydrophilic copolymers of N,N-Dimethylacrylamide, Acrylamido-2-methylpropanesulfonic acid, and ethylenedimethacrylate: Nanoscale morphology in the Swollen State and use as exotemplates for synthesis of nanostructured ferric oxide. Chem. Eur. J. 2012, 18, 6632–6643. [Google Scholar] [CrossRef] [PubMed]
- Corain, B.; Zecca, M.; Canton, P.; Centomo, P. Synthesis and catalytic activity of metal nanoclusters inside functional resins: An endeavour lasting 15 years. Philos. Trans. Soc. A 2010, 368, 1495–1507. [Google Scholar] [CrossRef] [PubMed]
- Biasi, P.; Mikkola, J.-P.; Sterchele, S.; Salmi, T.; Gemo, N.; Shchukarev, A.; Centomo, P.; Zecca, M.; Canu, P.; Rautio, A.-R.; et al. Revealing the role of bromide in the H2O2 direct synthesis with the catalyst wet pretreatment method (CWPM). AIChE J. 2017, 63, 32–42. [Google Scholar] [CrossRef]
- Sterchele, S.; Biasi, P.; Centomo, P.; Campestrini, S.; Shchukarev, A.; Rautio, A.-R.; Mikkola, J.-P.; Salmi, T.; Zecca, M. The effect of the metal precursor-reduction with hydrogen on a library of bimetallic Pd-Au and Pd-Pt catalysts for the direct synthesis of H2O2. Catal. Today 2015, 248, 40–47. [Google Scholar] [CrossRef]
- Centomo, P.; Zecca, M.; Di’Noto, V.; Lavina, S.; Bombi, G.G.; Nodari, L.; Salviulo, G.; Ingoglia, R.; Milone, C.; Galvagno, S.; et al. Characterization of synthetic iron oxides and their performance as support for au catalysts. ChemCatChem 2010, 2, 1143–1149. [Google Scholar] [CrossRef]
- Centomo, P.; Zecca, M.; Zoleo, A.; Maniero, A.L.; Canton, P.; Jeřábek, K.; Corain, B. Cross-linked polyvinyl polymers versus polyureas as designed supports for catalytically active M0 nanoclusters. Phys. Chem. Chem. Phys. 2009, 11, 4068–4076. [Google Scholar] [CrossRef]
- Frison, F.; Dalla Valle, C.; Evangelisti, C.; Centomo, P.; Zecca, M. Direct synthesis of hydrogen peroxide under semi-batch conditions over un-promoted palladium catalysts supported by ion-exchange sulfonated resins: Effects of the support morphology. Catalysts 2019, 9, 124. [Google Scholar] [CrossRef]
- Sterchele, S.; Centomo, P.; Zecca, M.; Hanková, L.; Jeřábek, K. Dry- and swollen-state morphology of novel high surface area polymers. Microporous Mesoporous Mater. 2014, 185, 26–29. [Google Scholar] [CrossRef]
- Toshima, N.; Yan, H.; Yukihide, S. Recent progress in bimetallic nanoparticles: Their preparation, structures and functions. In Metal Nanoclusters in Catalysis and Materials Science; Corain, B., Schmid, G., Toshima, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 49–75. ISBN 978-0-444-53057-8. [Google Scholar]
- Alayoglu, S.; Nilekar, A.U.; Mavrikakis, M.; Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 2012, 11, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Toshima, N. Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer. Pure Appl. Chem. 2009, 72, 317–325. [Google Scholar] [CrossRef]
- Guczi, L.; Beck, A.; Horváth, A.; Koppány, Z.; Stefler, G.; Frey, K.; Sajó, I.; Geszti, O.; Bazin, D.; Lynch, J. AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation. J. Mol. Catal. A Chem. 2003, 204–205, 545–552. [Google Scholar] [CrossRef]
- Toshima, N.; Shiraishi, Y.; Teranishi, T.; Miyake, M.; Tominaga, T.; Watanabe, H.; Brijoux, W.; Bönnemann, H.; Schmid, G. Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl. Organomet. Chem. 2001, 15, 178–196. [Google Scholar] [CrossRef]
- Bronstein, L.M.; Chernyshov, D.M.; Volkov, I.O.; Ezernitskaya, M.G.; Valetsky, P.M.; Matveeva, V.G.; Sulman, E.M. Structure and properties of bimetallic colloids formed in Polystyrene-block-Poly-4-vinylpyridine micelles: Catalytic behavior in selective hydrogenation of dehydrolinalool. J. Catal. 2000, 196, 302–314. [Google Scholar] [CrossRef]
- Dimitratos, N.; Lopez-Sanchez, J.A.; Lennon, D.; Porta, F.; Prati, L.; Villa, A. Effect of particle size on monometallic and bimetallic (Au,Pd)/C on the liquid phase oxidation of glycerol. Catal. Lett. 2006, 108, 147–153. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.; Ntainjua, N.E.; Carley, A.F.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 2009, 323, 1037–1041. [Google Scholar] [CrossRef]
- Liu, H.B.; Pal, U.; Medina, A.; Maldonado, C.; Ascencio, J.A. Structural incoherency and structure reversal in bimetallic Au-Pd nanoclusters. Phys. Rev. B 2005, 71, 075403. [Google Scholar] [CrossRef]
- Edwards, J.K.; Carley, A.F.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au–Pd catalysts. Faraday Discuss. 2008, 138, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, D.; Torres-Castro, A.; Gao, X.; Sepúlveda-Guzmán, S.; Ortiz-Méndez, U.; José-Yacamán, M. Three-layer core/shell structure in Au−Pd bimetallic nanoparticles. Nano Lett. 2007, 7, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Brieva, G.; Cano-Serrano, E.; Campos-Martin, J.M.; Fierro, J.L.G. Direct synthesis of hydrogen peroxide solution with palladium-loaded sulfonic acid polystyrene resins. Chem. Commun. 2004, 1184–1185. [Google Scholar] [CrossRef]
- Sterchele, S.; Biasi, P.; Centomo, P.; Shchukarev, A.; Kordás, K.; Rautio, A.-R.; Mikkola, J.-P.; Salmi, T.; Canton, P.; Zecca, M. Influence of metal precursors and reduction protocols on the chloride-free preparation of catalysts for the direct synthesis of hydrogen peroxide without selectivity enhancers. ChemCatChem 2016, 8, 1564–1574. [Google Scholar] [CrossRef]
- Canton, P.; Meneghini, C.; Riello, P.; Balerna, A.; Benedetti, A. Thermal evolution of carbon-supported Pd nanoparticles studied by time-resolved X-ray diffraction. J. Phys. Chem. B 2001, 105, 8088–8091. [Google Scholar] [CrossRef]
- Mariscal, M.M.; Mayoral, A.; Olmos-Asar, A.J.; Magen, C.; Mejía-Rosales, S.; Pérez-Tijerina, E.; José-Yacamán, M. Nanoalloying in real time. A high resolution STEM and computer simulation study. Nanoscale 2011, 3, 5013–5019. [Google Scholar] [CrossRef]
- Materlik, G.; Sparks, C.J.; Fischer, K. Resonant Anomalous X-ray Scattering: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 978-0-444-82025-9. [Google Scholar]
- Meneghini, C.; Mobilio, S.; Lusvarghi, L.; Bondioli, F.; Ferrari, A.M.; Manfredini, T.; Siligardi, C. The structure of ZrO2 phases and devitrification processes in a Ca–Zr–Si–O-based glass ceramic: A combined a-XRD and XAS study. J. Appl. Cryst. 2004, 37, 890–900. [Google Scholar] [CrossRef]
- Petkov, V.; Wanjala, B.N.; Loukrakpam, R.; Luo, J.; Yang, L.; Zhong, C.-J.; Shastri, S. Pt–Au Alloying at the Nanoscale. Nano Lett. 2012, 12, 4289–4299. [Google Scholar] [CrossRef]
- Shmueli, U. International Tables for Crystallography, Volume B: Reciprocal Space; Springer Science & Business Media: Berlin, Germany, 2008; ISBN 978-1-4020-8205-4. [Google Scholar]
- Canton, P.; Meneghini, C.; Riello, P.; Benedetti, A. X-ray diffraction and scattering. In In-Situ Spectroscopy of Catalysts; Weckhuysen, B.M., Ed.; American Scientific Publishers: Valencia, CA, USA, 2004; ISBN 978-1-58883-026-5. [Google Scholar]
- Georgopoulos, P.; Cohen, J.B. Study of supported platinum catalysts by anomalous scattering. J. Catal. 1985, 92, 211–215. [Google Scholar] [CrossRef]
- Balerna, A.; Liotta, L.; Longo, A.; Martorana, A.; Meneghini, C.; Mobilio, S.; Pipitone, G. Structural characterization of pumice-supported silver-palladium metal clusters by means of XAFS and AWAXS. Eur. Phys. J. D 1999, 7, 89–97. [Google Scholar] [CrossRef]
- Pascarelli, S.; Boscherini, F.; D’Acapito, F.; Hrdy, J.; Meneghini, C.; Mobilio, S. X-ray optics of a dynamical sagittal-focusing monochromator on the GILDA beamline at the ESRF. J. Synchrotron Radiat. 1996, 3, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Burato, C.; Campestrini, S.; Han, Y.-F.; Canton, P.; Centomo, P.; Canu, P.; Corain, B. Chemoselective and re-usable heterogeneous catalysts for the direct synthesis of hydrogen peroxide in the liquid phase under non-explosive conditions and in the absence of chemoselectivity enhancers. Appl. Catal. A Gen. 2009, 358, 224–231. [Google Scholar] [CrossRef]
- Meneghini, C.; Artioli, G.; Balerna, A.; Gualtieri, A.F.; Norby, P.; Mobilio, S. Multipurpose imaging-plate camera for in situ powder XRD at the GILDA beamline. J. Synchrotron Radiat. 2001, 8, 1162–1166. [Google Scholar] [CrossRef]
- Kan, C.; Cai, W.; Li, C.; Zhang, L.; Hofmeister, H. Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol. J. Phys. D Appl. Phys. 2003, 36, 1609–1614. [Google Scholar] [CrossRef]
- Fagherazzi, G.; Canton, P.; Riello, P.; Pernicone, N.; Pinna, F.; Battagliarin, M. Nanostructural features of Pd/C catalysts investigated by physical methods: A reference for chemisorption analysis. Langmuir 2000, 16, 4539–4546. [Google Scholar] [CrossRef]
- Pritchard, J.; Kesavan, L.; Piccinini, M.; He, Q.; Tiruvalam, R.; Dimitratos, N.; Lopez-Sanchez, J.A.; Carley, A.F.; Edwards, J.K.; Kiely, C.J.; et al. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au−Pd catalysts prepared by sol immobilization. Langmuir 2010, 26, 16568–16577. [Google Scholar] [CrossRef]
- Campos-Martin, J.M.; Blanco-Brieva, G.; Fierro, J.L.G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984. [Google Scholar] [CrossRef]
- Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Appl. Catal. A Gen. 2008, 350, 133–149. [Google Scholar] [CrossRef]
- Lewis, R.J.; Hutchings, G.J. Recent advances in the direct synthesis of H2O2. ChemCatChem 2019, 11, 298–308. [Google Scholar] [CrossRef]
- Herzing, A.; Watanabe, M.; Edwards, J.K.; Conte, M.; Tang, Z.-R.; Hutchings, G.J.; Kiely, C.J. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss. 2008, 138, 337–351. [Google Scholar] [CrossRef] [PubMed]
- García, T.; Murillo, R.; Agouram, S.; Dejoz, A.; Lázaro, M.J.; Torrente-Murciano, L.; Solsona, B. Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chem. Commun. 2012, 48, 5316–5318. [Google Scholar] [CrossRef] [PubMed]
- Epicier, T.; Sato, K.; Tournus, F.; Konno, T. Chemical composition dispersion in bi-metallic nanoparticles: Semi-automated analysis using HAADF-STEM. J. Nanopart. Res. 2012, 14, 1106. [Google Scholar] [CrossRef]
P75 | P50 | |||||
---|---|---|---|---|---|---|
Phase | A | B | C | A | B | C |
Edge | Pd | Pd | Pd | Pd | Pd | Pd |
Au | Au | Au | Au | Au | Au | |
a (Å) | 4.077 | 4.000 | 3.920 | 4.065 | 4.042 | 3.905 |
4.072 | 4.000 | 3.920 | 4.070 | 4.024 | 3.930 | |
D (nm) a | 16.0 | 5.4 | 1.1 | 11.0 | 3.3 | 1.2 |
15.7 | 5.8 | 1.0 | 11.0 | 3.2 | 1.3 | |
χAu (%) b | 0.994 | 0.659 | 0.001 | 0.931 | 0.812 | 0.085 |
0.966 | 0.659 | 0.001 | 0.956 | 0.859 | 0.087 | |
A111 (%) c | 21 | 5 | 74 | 13 | 24 | 63 |
12 | 4 | 84 | 8 | 22 | 70 |
# | Cat | P50 | P75 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Edge | Pd | Au | Pd | Au | |||||||||
Phase | A | B | C | A | B | C | A | B | C | A | B | C | |
1 | VMNP (nm3) | 696.91 | 18.82 | 0.90 | 696.91 | 17.16 | 1.15 | 2026.27 | 102.16 | 0.52 | 2144.66 | 82.45 | 0.70 |
2 | NMNP | 41,501 | 1140 | 61 | 41287 | 1053 | 76 | 119,601 | 6385 | 35 | 127,056 | 5133 | 46 |
3 | PMNP (ppm) | 261 | 18,147 | 981,592 | 182 | 20,842 | 978,976 | 72 | 338 | 999,590 | 47 | 369 | 999,583 |
4 | NAu·10−7 | 1.01 | 1.68 | 0.51 | 0.72 | 1.89 | 0.65 | 1.21 | 0.20 | 0.005 | 0.70 | 0.15 | 0.006 |
5 | NPd·10−7 | 0.08 | 0.39 | 5.46 | 0.03 | 0.31 | 6.78 | 0.007 | 0.10 | 4.94 | 0.02 | 0.08 | 5.558 |
6 | NPd/NAu | 7.9 × 10−2 | 0.23 | 10.7 | 4.2 × 10−2 | 0.16 | 10.4 | 5.8 × 10−3 | 0.50 | 9.9 × 102 | 2.8 × 10−2 | 0.53 | 9.3 × 102 |
7 | NPd/NA (overall) | 1.86 | 2.19 | 3.56 | 6.63 |
# | Cat | P50 | P75 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Edge | Pd | Au | Pd | Au | |||||||||
Phase | A | B | C | A | B | C | A | B | C | A | B | C | |
1 | PMNP (ppm) | 261 | 18,147 | 981,592 | 335 | 20,842 | 978,823 | 41 | 350 | 999,609 | 58 | 380 | 999,562 |
2 | ∆ (%) a | 0 | 0 | 0 | +82 | 0 | −0.016 | -43 | +3.6 | +0.002 | +23 | +3.0 | −0.002 |
3 | VMNP (nm3) | 696.91 | 18.82 | 0.90 | 696.91 | 17.16 | 1.15 | 2026.27 | 102.16 | 0.52 | 2144.66 | 82.45 | 0.70 |
4 | φ (%) b | 13 | 24 | 63 | 14 | 21 | 66 | 13 | 6 | 81 | 14 | 4 | 82 |
5 | NMNP | 41,501 | 1140 | 61 | 41,287 | 1053 | 76 | 119,601 | 6385 | 35 | 127,056 | 5133 | 46 |
6 | NAu·10−7 | 1.01 | 1.68 | 0.51 | 1.32 | 1.89 | 0.65 | 0.49 | 0.15 | 0.003 | 0.71 | 0.13 | 0.005 |
7 | NPd·10−7 | 0.08 | 0.39 | 5.46 | 0.06 | 0.31 | 6.77 | 0.003 | 0.08 | 3.47 | 0.03 | 0.07 | 4.62 |
8 | NPd/NAu | 7.9 × 10−2 | 0.23 | 10.7 | 4.5 × 10−2 | 0.16 | 10.4 | 4.3 × 10−3 | 0.53 | 1.2 × 103 | 4.2 × 10−2 | 0.54 | 9.2 × 102 |
9 | NPd/NAu (overall) | 1.86 | 1.85 | 5.56 | 5.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centomo, P.; Canton, P.; Burato, C.; Meneghini, C.; Zecca, M.
Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles
Centomo P, Canton P, Burato C, Meneghini C, Zecca M.
Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles
Centomo, Paolo, Patrizia Canton, Claudio Burato, Carlo Meneghini, and Marco Zecca.
2019. "Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles
Centomo, P., Canton, P., Burato, C., Meneghini, C., & Zecca, M.
(2019). Resonant-XRD Characterization of Nanoalloyed Au-Pd Catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles