Detection of Tampering by Image Resizing Using Local Tchebichef Moments
Abstract
:1. Introduction
2. Image Resizing and Their Possible Artifacts
2.1. Several Common Methods of Image Resizing
2.2. Analysis of Image Resizing Artifacts
3. Proposed Method
3.1. Preprocessing
3.2. Features of LTM
3.3. Ensemble Learning for Blind Forensics
4. Results
4.1. Experimental Environment
4.2. Experimental Discussions
4.2.1. Tamper Forensics on a Single Resizing Method
4.2.2. Identifying Images Obtained by Different Content-Aware Resizing Methods
4.2.3. The Detection Accuracy without Preprocessing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Avidan, S.; Shamir, A. Seam carving for content-aware resizing. ACM Trans. Graphics 2007, 26, 10. [Google Scholar] [CrossRef]
- Vaquero, D.; Turk, M.; Pulli, K. A survey of image retargeting techniques. Int. Soc. Opt. Photonics 2010, 7898, 789814. [Google Scholar]
- Wang, Y.S.; Tai, C.L.; Sorkine, O. Optimized scale-and-stretch for image resizing. ACM Trans. Graphics (TOG) 2008, 27, 118. [Google Scholar] [CrossRef]
- Lu, W.; Wu, M. Seam carving estimation using forensic hash. In Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security, Buffalo, NY, USA, 29–30 September 2011; pp. 9–14. [Google Scholar]
- Sakar, A.; Nataraj, L.; Manjunath, B.S. Detection of seam carving and localization of seam insertions in digital images. In Proceedings of the 11th ACM Workshop on Multimedia and Security, Princeton, NJ, USA, 7–8 September 2009; pp. 107–116. [Google Scholar]
- Fillion, C.; Sharma, G. Detecting content adaptive scaling of images for forensic applications. SPIE Electron. Imaging Int. Soc. Opt. Photonics 2010, 7541, 75410Z. [Google Scholar]
- Wei, J.D.; Lin, Y.J.; Wu, Y.J. A patch analysis method to detect seam carved images. Pattern Recognit. Lett. 2014, 36, 100–106. [Google Scholar] [CrossRef]
- Seung-Jin, R.Y.U.; Hae-Yeoun, L.E.E.; Heung-Kyu, L.E.E. Detecting trace of seam carving for forensic analysis. IEICE Trans. Inf. Syst. 2014, 97, 1304–1311. [Google Scholar]
- Yin, T.; Yang, G.; Li, L. Detecting seam carving based image resizing using local binary patterns. Comput. Secur. 2015, 55, 130–141. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Yin, T.; Yang, G. Detecting image seam carving with low scaling ratio using multiscale spatial and spectral entropies. J. Vis. Commun. Image Represent. 2017, 48, 281–291. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Li, Q.; Yang, G. Detection of image seam carving by using weber local descriptor and local binary patterns. J. Inf. Secur. Appl. 2017, 36, 135–144. [Google Scholar] [CrossRef]
- Liu, Q. An approach to detecting JPEG down-recompression and seam carving forgery under recompression anti-forensics. Pattern Recognit. 2017, 65, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Dietterich, T.G.; Bakiri, G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 1995, 2, 263–286. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Classification by pairwise coupling. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, UK, 1998; pp. 507–513. [Google Scholar]
- The Ensemble Learning. Available online: http://dde.binghamton.edu/download/ensemble (accessed on 25 May 2019).
- Schaefer, G.; Stich, M. UCID: An uncompressed color image database. Int. Soc. Opt. Photonics 2003, 5307, 472–480. [Google Scholar]
- Chen, B.; Coatrieux, G.; Wu, J. Fast computation of sliding discrete Tchebichef moments and its application in duplicated regions detection. IEEE Trans. Signal Process. 2015, 63, 5424–5436. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, X.; Sun, P. Symmetric image recognition by Tchebichef moment invariants. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 2273–2276. [Google Scholar]
- Li, L.; Zhu, H.; Yang, G. Referenceless measure of blocking artifacts by Tchebichef kernel analysis. IEEE Signal Process. Lett. 2014, 21, 122–125. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, F.; Li, X. Image resizing via non-homogeneous warping. Multimed. Tools Appl. 2012, 56, 485–508. [Google Scholar] [CrossRef]
- Lin, S.S.; Yeh, I.C.; Lin, C.H. Patch-based image warping for content-aware retargeting. IEEE Trans. Multimed. 2013, 15, 359–368. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Li, X.; Kim, H.J.; Wang, J. A full convolutional network based on DenseNet for remote sensing scene classification. Math. Biosci. Eng. 2019, 16, 3345–3367. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, B.; Kuang, Z.; Lin, D.; Fan, J. iPrivacy: Image Privacy Protection by Identifying Sensitive Objects via Deep Multi-Task Learning. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1005–1016. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Hosseinabadi, A.A.R.; Soltani, M. A Hybrid Genetic Algorithm for Multi-trip Green Capacitated Arc Routing Problem in the Scope of Urban Services. Sustainability 2018, 10, 1366. [Google Scholar] [CrossRef]
- Chen, Y.T.; Wang, J.; Chen, X.; Zhu, M.; Yang, K.; Wang, Z.; Xia, R. Single-Image Super-Resolution Algorithm Based on Structural Self-Similarity and Deformation Block Features. IEEE Access 2019, 7, 58791–58801. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Sangaiah, A.K. Spatial and semantic convolutional features for robust visual object tracking. Multimed. Tools Appl. 2018. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, X.; Sun, J.; Wang, J.; Li, K. Dual model learning combined with multiple feature selection for accurate visual tracking. IEEE Access 2019, 7, 43956–43969. [Google Scholar] [CrossRef]
- Yun, S.; Gaobo, Y.; Hongtao, X. Residual domain dictionary learning for compressed sensing video recovery. Multimed. Tools Appl. 2017, 76, 10083C10096. [Google Scholar]
- Xiang, L.; Shen, X.; Qin, J.; Hao, W. Discrete Multi-Graph Hashing for Large-scale Visual Search. Neural Process. Lett. 2019, 49, 1055–1069. [Google Scholar] [CrossRef]
- Yu, J.; Rui, Y.; Tang, Y.Y.; Tao, D. High-Order Distance-Based Multiview Stochastic Learning in Image Classification. IEEE Trans. Cybern. 2014, 44, 2431–2442. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Zhu, Y.; Ding, X.; Gong, R. Probability model-based early Merge mode decision for dependent views in 3D-HEVC. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2018, 14, 8501–8515. [Google Scholar] [CrossRef]
- Ding, X.; Yang, G.; Li, R.; Zhang, L.; Li, Y.; Sun, X. Identification of MC-FRUC based on spatial-temporal Markov features of residue signal. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1497–1512. [Google Scholar] [CrossRef]
- Xia, M.; Yang, G.; Li, L.; Li, R.; Sun, X. Detecting video frame rate up-conversion based on frame-level analysis of average texture variation. Multimed. Tools Appl. 2017, 76, 8399–8421. [Google Scholar] [CrossRef]
- He, J.; Yang, G.; Song, J.; Ding, X.; Li, R. Hierarchical prediction-based motion vector refinement for video frame-rate up-conversion. J. Real-Time Image Process. 2018, 1–15. [Google Scholar] [CrossRef]
- Tang, D.; Zhou, S.; Yang, W. Random-filtering based sparse representation parallel face recognition. Multimed. Tools Appl. 2019, 78, 1419–1439. [Google Scholar] [CrossRef]
- Pan, J.S.; Kong, L.; Sung, T.W.; Tsai, P.W.; Snášel, V. A Clustering Scheme for Wireless Sensor Networks Based on Genetic Algorithm and Dominating Set. J. Internet Technol. 2018, 19, 1111–1118. [Google Scholar]
- Meng, Z.; Pan, J.-S.; Tseng, K.-K. PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptstion schemes for numerical optimization. Knowl.-Based Syst. 2019, 168, 80–99. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Pan, J.-S.; Dao, T.-K. An Improved Flower Pollination Algorithm for Optimizing Layouts of Nodes in Wireless Sensor Network. IEEE Access 2019, 7. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.J. An Intelligent Data Gathering Schema with Data Fusion Supported for Mobile Sink in WSNs. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Sherratt, R.S.; Park, J.H. An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. J. Supercomput. 2018, 74, 6633–6645. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Ji, S.; Park, J.H. Energy Efficient Cluster-based Dynamic Routes Adjustment Approach for Wireless Sensor Networks with Mobile Sinks. J. Supercomput. 2017, 73, 3277–3290. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.J. An Enhanced PEGASIS Algorithm with Mobile Sink Support for Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liu, W.; Wu, W.; Lim, S.J. An Asynchronous Clustering and Mobile Data Gathering Schema based on Timer Mechanism in Wireless Sensor Networks. Comput. Mater. Contin. 2019, 58, 711–725. [Google Scholar] [CrossRef]
- Pan, J.S.; Lee, C.Y.; Sghaier, A.; Zeghid, M.; Xie, J. Novel Systolization of Subquadratic Space Complexity Multipliers Based on Toeplitz Matrix-Vector Product Approach. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 1614–1622. [Google Scholar] [CrossRef]
- He, Y.; Xiang, S.; Li, K.; Liu, Y. Region-Based Compressive Networked Storage with Lazy Encoding. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 1390–1402. [Google Scholar]
- Pan, J.S.; Kong, L.P.; Sung, T.W.; Tsai, P.W.; Snasel, V. Alpha-Fraction First, Strategy for Hierarchical Wireless Sensor Networks. J. Internet Technol. 2018, 19, 1717–1726. [Google Scholar]
- He, S.; Xie, K.; Chen, W.; Zhang, D.; Wen, J. Energy-aware Routing for SWIPT in Multi-hop Energy-constrained Wireless Network. IEEE Access 2018, 6, 17996–18008. [Google Scholar] [CrossRef]
Scaling Ratio (%) | Accuracy (%) | ||
---|---|---|---|
Scale-and-Stretch | Seam Carving | Scaling | |
10 | 82.51 | 75.26 | 74.33 |
20 | 88.45 | 91.67 | 87.37 |
30 | 95.51 | 97.87 | 95.55 |
40 | 98.95 | 99.77 | 98.87 |
50 | 99.85 | 100 | 99.81 |
Uncompressed (%) | Compressed (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 50% | mixed | 10% | 20% | 30% | 40% | 50% | mixed |
82.04 | 90.00 | 93.30 | 94.61 | 95.94 | 92.04 | 76 | 81.13 | 84.08 | 87.98 | 88.34 | 78.33 |
Uncompressed | Detection Accuracy (%) | Compressed | Detection Accuracy (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | SNS | SC | SL | OR | SNS | SC | SL | ||
OR | 95.93 | * | * | * | OR | 93.45 | * | * | * |
SNS | * | 90.14 | 11.12 | 3.61 | SNS | * | 80.69 | 11.75 | 10.49 |
SC | * | * | 83.71 | 6.01 | SC | * | 1.49 | 68.43 | 18.77 |
SL | 3.26 | 8.90 | 5.17 | 90.38 | SL | 5.56 | 17.82 | 19.82 | 70.73 |
Uncompressed (%) | Compressed (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 50% | mixed | 10% | 20% | 30% | 40% | 50% | mixed |
84.04 | 91.02 | 94.32 | 95.41 | 96.04 | 93.04 | 70.93 | 74.59 | 79.63 | 83.18 | 85.34 | 76.09 |
Uncompressed | Detection Accuracy (%) | Compressed | Detection Accuracy (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | SNS | SC | SL | OR | SNS | SC | SL | ||
OR | 96.39 | * | * | * | OR | 87.98 | * | * | * |
SNS | * | 91.54 | 9.21 | 3.21 | SNS | * | 77.25 | 16.29 | 12.49 |
SC | * | * | 85.71 | 5.41 | SC | 1.35 | 1.73 | 65.14 | 17.07 |
SL | 3.60 | 8.40 | 5.08 | 91.38 | SL | 10.67 | 21.02 | 18.57 | 70.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Wang, S.; Wang, J.; Sangaiah, A.K.; Li, F.; Sheng, V.S. Detection of Tampering by Image Resizing Using Local Tchebichef Moments. Appl. Sci. 2019, 9, 3007. https://doi.org/10.3390/app9153007
Zhang D, Wang S, Wang J, Sangaiah AK, Li F, Sheng VS. Detection of Tampering by Image Resizing Using Local Tchebichef Moments. Applied Sciences. 2019; 9(15):3007. https://doi.org/10.3390/app9153007
Chicago/Turabian StyleZhang, Dengyong, Shanshan Wang, Jin Wang, Arun Kumar Sangaiah, Feng Li, and Victor S. Sheng. 2019. "Detection of Tampering by Image Resizing Using Local Tchebichef Moments" Applied Sciences 9, no. 15: 3007. https://doi.org/10.3390/app9153007
APA StyleZhang, D., Wang, S., Wang, J., Sangaiah, A. K., Li, F., & Sheng, V. S. (2019). Detection of Tampering by Image Resizing Using Local Tchebichef Moments. Applied Sciences, 9(15), 3007. https://doi.org/10.3390/app9153007