Active Control of Sound Transmission through Orthogonally Rib Stiffened Double-Panel Structure: Mechanism Analysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Theoretical Modeling Approach
3. Mechanism Analysis for Active Control
3.1. Model Parameters Assignment and Model Validation
3.2. The Resonant Characteristics of the Ribbed Plate
3.3. Control Results
3.4. Physical Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dozio, L.; Ricciardi, M. Free vibration analysis of ribbed plates by a combined analytical-numerical method. J. Sound Vib. 2009, 319, 681–697. [Google Scholar] [CrossRef]
- Gardonio, P.; Elliott, S.J. Active control of structure-borne and airborne sound transmission through double panel. J. Aircr. 1999, 36, 1023–1032. [Google Scholar] [CrossRef]
- Carneal, J.P.; Fuller, C.R. Active structural acoustic control of noise transmission through double panel systems. AIAA J. 1995, 33, 618–623. [Google Scholar] [CrossRef]
- Sas, P.; Bao, C.; Augusztinovicz, F. Active control of sound transmission through a double panel partition. J. Sound Vib. 1995, 180, 609–625. [Google Scholar] [CrossRef]
- Pan, J.; Bao, C. Analytical study of different approaches for active control of sound transmission through double walls. J. Acoust. Soc. Am. 1998, 103, 1916–1922. [Google Scholar] [CrossRef]
- Pan, X.; Sutton, T.J.; Elliott, S.J. Active control of sound transmission through a double-leaf partition by volume velocity cancellation. J. Acoust. Soc. Am. 1998, 104, 2828–2835. [Google Scholar] [CrossRef]
- Bao, C.; Pan, J. Experimental study of different approaches for active control of sound transmission through double walls. J. Acoust. Soc. Am. 1997, 102, 1664–1670. [Google Scholar] [CrossRef]
- Ma, X.; Chen, K.; Ding, S. Physical mechanism of active control of sound transmission through rib stiffened double-panel structure. J. Sound Vib. 2016, 371, 2–18. [Google Scholar] [CrossRef]
- Lin, T. A study of modal characteristics and the control mechanism of finite periodic and irregular ribbed plates. J. Acoust. Soc. Am. 2008, 123, 729–737. [Google Scholar] [CrossRef]
- Chiba, M.; Yoshida, I. Free vibration of a rectangular plat-beam coupled system. J. Sound Vib. 1996, 194, 49–65. [Google Scholar] [CrossRef]
- Asku, G.; Ali, R. Free vibration analysis of stiffened plates using finite difference method. J. Sound Vib. 1976, 48, 15–25. [Google Scholar]
- Mercer, C.A.; Seavey, M.C. Prediction of natural frequencies and normal modes of skin-stringer panel rows. J. Sound Vib. 1967, 6, 149–162. [Google Scholar] [CrossRef]
- Zeng, H.; Bert, C.W. A differential quadrature analysis of vibration for rectangular stiffened plates. J. Sound Vib. 2001, 241, 247–252. [Google Scholar] [CrossRef]
- Remillieux, M.C.; Burdisso, R.A. Vibro-acoustic response of an infinite, rib-stiffened, thick-plate assembly using finite-element analysis. J. Acoust. Soc. Am. 2012, 132, EL36–EL42. [Google Scholar] [CrossRef]
- Lin, T. An analytical and experimental study of the vibration response of a clamped ribbed plate. J. Sound Vib. 2012, 331, 902–913. [Google Scholar] [CrossRef] [Green Version]
- Xin, F.X.; Lu, T.J. Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption. J. Acoust. Soc. Am. 2011, 129, 1919–1934. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Pan, J. A closed form solution for the dynamic response of finite ribbed plates. J. Acoust. Soc. Am. 2006, 119, 917–925. [Google Scholar] [CrossRef]
- Ma, X.; Chen, K.; Ding, S. Some physical insights for active control of sound radiated from a clamped ribbed plate. Appl. Acoust. 2015, 99, 1–7. [Google Scholar] [CrossRef]
- Li, Y.Y.; Cheng, L. Mechanisms of active control of sound transmission through a linked double-wall system into an acoustic cavity. Appl. Acoust. 2008, 69, 614–623. [Google Scholar] [CrossRef]
- Pan, J.; Hansen, C.H.; Bies, D.A. Active control of noise transmission through a panel into a cavity: I. Analytical study. J. Acoust. Soc. Am. 1990, 87, 2098–2108. [Google Scholar] [CrossRef]
- Pan, J.; Hansen, C.H. Active control of noise transmission through a panel into a cavity. II. Experimental study. J. Acoust. Soc. Am. 1991, 90, 1488–1492. [Google Scholar] [CrossRef]
- Carneal, J.P.; Fuller, C.R. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems. J. Sound Vib. 2004, 272, 749–771. [Google Scholar] [CrossRef]
- Johnson, M.E.; Elliott, S.J. Active control of sound radiation using volume velocity cancellation. J. Acoust. Soc. Am. 1995, 98, 2174–2186. [Google Scholar] [CrossRef]
- Sanada, A.; Tanaka, N. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point actuators. J. Acoust. Soc. Am. 2012, 132, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Li, Y.Y.; Gao, J.X. Energy transmission in a mechanically-linked double-wall structure coupled to an acoustic enclosure. J. Acoust. Soc. Am. 2005, 117, 2742–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Geometrical Parameters | Value | Material Properties | Value |
---|---|---|---|
The length and width of the base plate A and B | m m | The material of the base plates and the ribs | aluminum |
The thickness of the base plate A and B | m m | The density of aluminum | kg/m3 |
The locations of the vertical and horizontal ribs for ribbed plate A | m m | The Young’s modulus of aluminum | N/m2 |
The locations of the vertical and horizontal ribs for ribbed plate B | m m | The Poisson’s ratio of aluminum | |
The size of the rectangular cross section of the rib (wide × high) | m2 | The density of air | kg/m3 |
The depth of cavity | m | The sound speed of air | m/s |
The location of the control source | The damping ratio of acoustical mode |
Case | The Number of the Modes | The Radiated Power of the Ribbed Plate B |
---|---|---|
N1 | , , | 45.8 dB |
N2 | , , | 45.2 dB |
N3 | , , | 44.8 dB |
N4 | , , | 43.5 dB |
N5 | , , | 37.6 dB |
N6 | , , | 29.1 dB |
Category | Resonant Frequency (Hz) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Modal Sequence | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Ribbed plate A | Analytical results | 73 | 132 | 161 | 201 | 248 | 261 | 278 | 347 | 358 | 384 | 430 | 439 | 471 | 489 |
COMSOL | 76 | 135 | 165 | 204 | 250 | 264 | 280 | 347 | 361 | 383 | 430 | 439 | 472 | 493 | |
Ribbed plate B | Analytical results | 90 | 158 | 203 | 238 | 308 | 333 | 364 | 425 | 467 | 473 | ||||
COMSOL | 92 | 161 | 206 | 239 | 310 | 333 | 365 | 419 | 467 | 477 |
Resonant Frequency (Hz) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Modal index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
(0,0,0) | (1,0,0) | (0,1,0) | (1,1,0) | (2,0,0) | (2,1,0) | (0,2,0) | (3,0,0) | (1,2,0) | (3,1,0) | (2,2,0) | |
Frequency | 0 | 143 | 205 | 250 | 287 | 352 | 410 | 430 | 434 | 476 | 500 |
Modal Index | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
(1,1) | (2,1) | (1,2) | (3,1) | (2,2) | (3,2) | (4,1) | (1,3) | (2,3) | (4,2) | (5,1) | (3,3) | (5,2) | (4,3) | (1,4) |
16 | 17 | 18 | 19 | 20 | ||||||||||
(6,1) | (2,4) | (3,4) | (5,3) | (6,2) |
The Energy Contributions from Cavity Modes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cavity modes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
(0,0,0) | (1,0,0) | (0,1,0) | (1,1,0) | (2,0,0) | (2,1,0) | (0,2,0) | (3,0,0) | (1,2,0) | (3,1,0) | ||
Case 2 | |||||||||||
(1,1) | Before control | 0.04 × 10−7 | 0.10 × 10−7 | 0.05 × 10−7 | 0.01 × 10−7 | 0.01 × 10−7 | |||||
[40°] | [57°] | [48°] | [−133°] | [52°] | |||||||
After control | 0.45 × 10−8 | 0.65 × 10−8 | 0.50 × 10−8 | 0.04 × 10−8 | 0.22 × 10−8 | ||||||
[37°] | [−135°] | [45°] | [−139°] | [48°] | |||||||
(2,1) | Before control | 0.04 × 10−7 | 0.62 × 10−7 | 0.33 × 10−7 | 0.05 × 10−7 | 0.04 × 10−7 | |||||
[−134°] | [−123°] | [−134°] | [46°] | [−124°] | |||||||
After control | 0.05 × 10−7 | 0.39 × 10−7 | 0.36 × 10−7 | 0.03 × 10−7 | 0.06 × 10−7 | ||||||
[−136°] | [44°] | [−136°] | [39°] | [−128°] | |||||||
(3,1) | Before control | 0.02 × 10−7 | 0.14 × 10−7 | 0.08 × 10−7 | 0.01 × 10−7 | 0.01 × 10−7 | |||||
[−138°] | [−123°] | [−134°] | [46°] | [−120°] | |||||||
After control | 0.24 × 10−8 | 0.85 × 10−8 | 0.85 × 10−8 | 0.05 × 10−8 | 0.08 × 10−8 | ||||||
[−141°] | [43°] | [−137°] | [40°] | [−124°] | |||||||
Case 3 | |||||||||||
(1,2) | Before control | 0.01 × 10−10 | 0.02 × 10−10 | 0.22 × 10−9 | 0.04 × 10−9 | 0.02 × 10−10 | 0.02 × 10−9 | 0.02 × 10−9 | 0.09 × 10−9 | 0.48 × 10−9 | 0.16 × 10−9 |
[127°] | [−118°] | [−65°] | [−70°] | [28°] | [−160°] | [−75°] | [−99°] | [−72°] | [113°] | ||
After control | 0.05 × 10−10 | 0.03 × 10−10 | 0.18 × 10−9 | 0.06 × 10−9 | 0.01 × 10−9 | 0.02 × 10−9 | 0.05 × 10−10 | 0.21 × 10−9 | 0.15 × 10−9 | 0.10 × 10−9 | |
[101°] | [117°] | [−62°] | [−75°] | [84°] | [−163°] | [90°] | [−89°] | [88°] | [123°] | ||
(3,1) | Before control | 0.01 × 10−10 | 0.03 × 10−10 | 0.02 × 10−9 | 0.01 × 10−9 | 0.02 × 10−10 | 0.03 × 10−9 | 0.05 × 10−9 | 0.08 × 10−9 | 0.39 × 10−9 | 0.03 × 10−9 |
[124°] | [58°] | [124°] | [110°] | [25°] | [−59°] | [99°] | [78°] | [105°] | [−61°] | ||
After control | 0.06 × 10−10 | 0.05 × 10−10 | 0.02 × 10−9 | 0.02 × 10−9 | 0.01 × 10−9 | 0.04 × 10−9 | 0.01 × 10−9 | 0.18 × 10−9 | 0.12 × 10−9 | 0.02 × 10−9 | |
[98°] | [−66°] | [127°] | [104°] | [82°] | [−63°] | [−96°] | [88°] | [−95°] | [−51°] | ||
(2,2) | Before control | 0.02 × 10−10 | 0.03 × 10−10 | 0.25 × 10−9 | 0.16 × 10−9 | 0.04 × 10−10 | 0.38 × 10−9 | 0.05 × 10−9 | 0.19 × 10−9 | 0.96 × 10−9 | 0.56 × 10−9 |
[−52°] | [63°] | [117°] | [107°] | [−152°] | [−68°] | [104°] | [81°] | [108°] | [−69°] | ||
After control | 0.01 × 10−9 | 0.06 × 10−10 | 0.21 × 10−9 | 0.23 × 10−9 | 0.02 × 10−9 | 0.47 × 10−9 | 0.01 × 10−9 | 0.45 × 10−9 | 0.30 × 10−9 | 0.34 × 10−9 | |
[−78°] | [−61°] | [120°] | [102°] | [−95°] | [−71°] | [−91°] | [91°] | [−92°] | [−59°] | ||
(3,2) | Before control | 0.04 × 10−10 | 0.01 × 10−9 | 0.40 × 10−9 | 0.13 × 10−9 | 0.09 × 10−10 | 0.77 × 10−9 | 0.08 × 10−9 | 0.41 × 10−9 | 0.22 × 10−8 | 0.05 × 10−8 |
[128°] | [−120°] | [−63°] | [−70°] | [27°] | [111°] | [−75°] | [−100°] | [−73°] | [114°] | ||
After control | 0.02 × 10−9 | 0.02 × 10−9 | 0.34 × 10−9 | 0.19 × 10−9 | 0.05 × 10−9 | 0.93 × 10−9 | 0.02 × 10−9 | 0.96 × 10−9 | 0.68 × 10−9 | 0.31 × 10−9 | |
[102°] | [115°] | [−59°] | [−75°] | [83°] | [108°] | [90°] | [−90°] | [87°] | [124°] | ||
(4,1) | Before control | 0.09 × 10−11 | 0.05 × 10−10 | 0.09 × 10−9 | 0.08 × 10−9 | 0.02 × 10−10 | 0.14 × 10−9 | 0.01 × 10−9 | 0.28 × 10−9 | 0.75 × 10−9 | 0.01 × 10−9 |
[−53°] | [−122°] | [117°] | [106°] | [−153°] | [−68°] | [107°] | [78°] | [106°] | [44°] | ||
After control | 0.04 × 10−10 | 0.08 × 10−10 | 0.08 × 10−9 | 0.12 × 10−9 | 0.01 × 10−9 | 0.17 × 10−9 | 0.03 × 10−9 | 0.65 × 10−9 | 0.24 × 10−9 | 0.07 × 10−10 | |
[−79°] | [113°] | [120°] | [101°] | [−97°] | [−71°] | [−87°] | [88°] | [−94°] | [54°] | ||
(1,3) | Before control | 0.03 × 10−10 | 0.06 × 10−10 | 0.02 × 10−9 | 0.08 × 10−10 | 0.02 × 10−10 | 0.08 × 10−9 | 0.14 × 10−9 | 0.13 × 10−9 | 0.70 × 10−9 | 0.02 × 10−9 |
[126°] | [−122°] | [109°] | [−77°] | [−152°] | [−75°] | [−81°] | [−104°] | [−76°] | [−81°] | ||
After control | 0.02 × 10−9 | 0.01 × 10−9 | 0.02 × 10−9 | 0.01 × 10−9 | 0.01 × 10−9 | 0.10 × 10−9 | 0.03 × 10−9 | 0.31 × 10−9 | 0.22 × 10−9 | 0.01 × 10−9 | |
[99°] | [113°] | [112°] | [−82°] | [−96°] | [−79°] | [84°] | [−94°] | [84°] | [−71°] |
The Energy Contributions from Cavity Modes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cavity modes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
(0,0,0) | (1,0,0) | (0,1,0) | (1,1,0) | (2,0,0) | (2,1,0) | (0,2,0) | (3,0,0) | (1,2,0) | (3,1,0) | ||
Case 4 | |||||||||||
(1,2) | Before control | 0.01 × 10−6 | 0.07 × 10−7 | 0.21 × 10−6 | 0.02 × 10−6 | 0.09 × 10−7 | |||||
[−137°] | [−130°] | [−70°] | [−139°] | [47°] | |||||||
After control | 0.15 × 10−7 | 0.14 × 10−7 | 0.36 × 10−7 | 0.45 × 10−7 | 0.15 × 10−7 | ||||||
[−140°] | [−137°] | [38°] | [−143°] | [41°] | |||||||
(3,1) | Before control | 0.03 × 10−7 | 0.01 × 10−7 | 0.44 × 10−7 | 0.05 × 10−7 | 0.02 × 10−7 | |||||
[58°] | [22°] | [109°] | [40°] | [−120°] | |||||||
After control | 0.42 × 10−8 | 0.22 × 10−8 | 0.75 × 10−8 | 0.91 × 10−8 | 0.38 × 10−8 | ||||||
[55°] | [16°] | [−143°] | [35°] | [−126°] | |||||||
(2,2) | Before control | 0.03 × 10−7 | 0.02 × 10−7 | 0.61 × 10−7 | 0.07 × 10−7 | 0.02 × 10−7 | |||||
[−139°] | [−124°] | [−70°] | [−136°] | [46°] | |||||||
After control | 0.04 × 10−7 | 0.04 × 10−7 | 0.10 × 10−7 | 0.13 × 10−7 | 0.04 × 10−7 | ||||||
[−142°] | [−130°] | [38°] | [−140°] | [41°] | |||||||
(3,2) | Before control | 0.02 × 10−7 | 0.08 × 10−8 | 0.29 × 10−7 | 0.03 × 10−7 | 0.01 × 10−7 | |||||
[49°] | [38°] | [109°] | [39°] | [−127°] | |||||||
After control | 0.23 × 10−8 | 0.16 × 10−8 | 0.49 × 10−8 | 0.59 × 10−8 | 0.22 × 10−8 | ||||||
[46°] | [32°] | [−142°] | [35°] | [−133°] | |||||||
Case 5 | |||||||||||
(2,2) | Before control | 0.03 × 10−9 | 0.08 × 10−9 | 0.06 × 10−8 | 0.03 × 10−8 | 0.01 × 10−8 | 0.14 × 10−8 | 0.14 × 10−8 | 0.52 × 10−8 | 0.74 × 10−8 | 0.05 × 10−8 |
[63°] | [−157°] | [49°] | [−137°] | [57°] | [74°] | [−134°] | [0.4°] | [42°] | [−110°] | ||
After control | 0.07 × 10−8 | 0.01 × 10−7 | 0.06 × 10−7 | 0.06 × 10−7 | 0.02 × 10−7 | 0.13 × 10−7 | 0.16 × 10−7 | 0.52 × 10−7 | 0.68 × 10−7 | 0.11 × 10−7 | |
[63°] | [67°] | [63°] | [−119°] | [62°] | [66°] | [68°] | [55°] | [−118°] | [−119°] | ||
(3,2) | Before control | 0.05 × 10−9 | 0.01 × 10−8 | 0.10 × 10−8 | 0.05 × 10−8 | 0.02 × 10−8 | 0.02 × 10−7 | 0.02 × 10−7 | 0.09 × 10−7 | 0.12 × 10−7 | 0.08 × 10−8 |
[−117°] | [20°] | [−131°] | [47°] | [−25°] | [−106°] | [46°] | [180°] | [−139°] | [73°] | ||
After control | 0.01 × 10−7 | 0.02 × 10−7 | 0.01 × 10−6 | 0.01 × 10−6 | 0.03 × 10−7 | 0.02 × 10−6 | 0.03 × 10−6 | 0.09 × 10−6 | 0.11 × 10−6 | 0.02 × 10−6 | |
[−117°] | [−116°] | [−117°] | [65°] | [−119°] | [−115°] | [−112°] | [−125°] | [61°] | [64°] | ||
(5,1) | Before control | 0.01 × 10−9 | 0.03 × 10−9 | 0.02 × 10−8 | 0.09 × 10−9 | 0.05 × 10−9 | 0.05 × 10−8 | 0.05 × 10−8 | 0.17 × 10−8 | 0.24×10−8 | 0.02×10−8 |
[−93°] | [23°] | [−131°] | [44°] | [−98°] | [−104°] | [29°] | [179°] | [−139°] | [70°] | ||
After control | 0.03×10−8 | 0.04×10−8 | 0.02×10−7 | 0.02×10−7 | 0.07×10−8 | 0.04×10−7 | 0.05×10−7 | 0.17×10−7 | 0.22×10−7 | 0.04×10−7 | |
[−94°] | [−112°] | [−117°] | [62°] | [−92°] | [−112°] | [−129°] | [−126°] | [61°] | [61°] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Chen, K.; Xu, J. Active Control of Sound Transmission through Orthogonally Rib Stiffened Double-Panel Structure: Mechanism Analysis. Appl. Sci. 2019, 9, 3286. https://doi.org/10.3390/app9163286
Ma X, Chen K, Xu J. Active Control of Sound Transmission through Orthogonally Rib Stiffened Double-Panel Structure: Mechanism Analysis. Applied Sciences. 2019; 9(16):3286. https://doi.org/10.3390/app9163286
Chicago/Turabian StyleMa, Xiyue, Kean Chen, and Jian Xu. 2019. "Active Control of Sound Transmission through Orthogonally Rib Stiffened Double-Panel Structure: Mechanism Analysis" Applied Sciences 9, no. 16: 3286. https://doi.org/10.3390/app9163286
APA StyleMa, X., Chen, K., & Xu, J. (2019). Active Control of Sound Transmission through Orthogonally Rib Stiffened Double-Panel Structure: Mechanism Analysis. Applied Sciences, 9(16), 3286. https://doi.org/10.3390/app9163286