Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- N = 10 + 0 (D ≈ 11.7 µm, λ ≈ 620 nm)
- N = 5 + 5 (D ≈ 14.2 µm, λ ≈ 600 nm)
- N = 4 + 6 (D ≈ 14.8 µm, λ ≈ 550 nm)
- N = 6 + 4 (D ≈ 14.4 µm, λ ≈ 500 nm)
- N = 2 + 8 (D ≈ 17.0 µm, λ ≈ 580 nm)
- N = 8 + 2 (D ≈ 16.5 µm, λ ≈ 540 nm)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Li, C.; Ma, C.; Feng, J.; Hong, W.; Zhang, Z. Formation of laser induced periodic structures on stainless steel using multi-burst picosecond pulses. Opt. Express 2018, 26, 6325–6330. [Google Scholar] [CrossRef] [PubMed]
- Fraggelakis, F.; Mincuzzi, G.; Lopez, J.; Manek-Hönninger, I.; Kling, R. Texturing metal surface with MHz ultra-short laser pulses. Opt. Express 2017, 25, 18131–18139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Wang, A.; Li, B.; Cui, T.; Lu, Y. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci. Appl. 2018, 7, 17134. [Google Scholar]
- Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J. Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation. Opt. Express 2015, 23, 25959–25971. [Google Scholar] [CrossRef] [PubMed]
- Bonse, J.; Höhm, S.; Rosenfeld, A.; Krüger, J. Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air. Appl. Phys. A 2013, 110, 547–551. [Google Scholar] [CrossRef]
- Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel. Appl. Surf. Sci. 2015, 336, 21–27. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium. Appl. Surf. Sci. 2016, 374, 190–196. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Chen, Q.; Sun, H. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing. Appl. Phys. Lett. 2017, 110, 091602. [Google Scholar] [CrossRef] [Green Version]
- Kuladeep, R.; Sahoo, C.; Narayana Rao, D. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser. Appl. Phys. Lett. 2014, 104, 222103. [Google Scholar] [CrossRef]
- Chen, Y.; Salter, P.; Knauer, S.; Weng, L.; Frangeskou, A. Laser writing of coherent colour centres in diamond. Nat. Photon. 2016, 11, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Jiang, L.; Li, X.; Wang, C.; Xiao, H.; Lu, Y.; Tsai, H. Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics. J. Phys. D: Appl. Phys. 2012, 45, 175301. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, C.; Liu, H.; Dai, Q.; Wu, L.; Lan, S.; Gopal, A.V.; Trofimov, V.A.; Lysak, T.M. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl. Surf. Sci. 2012, 258, 7625–7632. [Google Scholar] [CrossRef]
- Yuan, H.; Yost, V.; Page, M.; Stradins, P.; Meier, D.; Branz, H. Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules. Appl. Phys. Lett. 2009, 95, 123501. [Google Scholar] [CrossRef]
- Raimbault, O.; Benayoun, S.; Anselme, K.; Mauclair, C.; Bourgade, T.; Kietzig, A.; Girard-Lauriault, P.; Valette, S.; Donnet, C. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response. Mater. Sci. Eng. C 2016, 69, 311–320. [Google Scholar] [CrossRef]
- Cunha, A.; Elie, A.; Plawinski, L.; Serro, A.P.; Botelho do Rego, A.M.; Almeida, A.M.; Urdaci, C.; Durrieu, M.; Vilar, R. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus Aureus and biofilm formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Large area uniform nanostructures fabricated by direct femtosecond laser ablation. Opt. Express 2008, 16, 19354–19365. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; van Driel, H.M. Laser-induced periodic surface structute. I. Theory, Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Young, J.F.; Preston, J.S.; van Driel, H.M.; Sipe, J.E. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 1983, 27, 1152–1172. [Google Scholar] [CrossRef]
- Yang, W.; Bricchi, E.; Kazansky, P.G.; Bovatsek, J.; Arai, A.Y. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing. Opt. Express 2006, 14, 10117. [Google Scholar] [CrossRef]
- Costache, F.; Henyk, M.; Reif, J. Modification of dielectric surfaces with ultra-short laser pulses. Appl. Surf. Sci. 2002, 186, 352–357. [Google Scholar] [CrossRef]
- Le Harzic, R.; DÖrr, D.; Sauer, D.; Stracke, F.; Zimmermann, H. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl. Phys. Lett. 2011, 98, 211905. [Google Scholar] [CrossRef]
- Dong, Y.; Molian, P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser. Appl. Phys. Lett. 2003, 84, 10. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef]
- Wang, J.; Guo, C. Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses. J. Appl. Phys. 2006, 100, 023511. [Google Scholar] [CrossRef]
- Forster, M.; Kautek, W.; Faure, N.; Audouard, E.; Stoian, R. Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses. Phys. Chem. Chem. Phys. 2011, 13, 4155–4158. [Google Scholar] [CrossRef]
- Hsu, E.M.; Crawford, T.H.; Tiedje, H.F.; Haugen, H.K. Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm. Appl. Phys. Lett. 2007, 91, 111102. [Google Scholar] [CrossRef]
- Han, W.; Jiang, L.; Li, X.; Liu, P.; Xu, L.; Lu, Y. Continuous modulations of femtosecond laser induced periodic surface structures and scanned line-widths on silicon by polarization changes. Opt. Express 2013, 21, 15505–15513. [Google Scholar] [CrossRef]
- Liang, F.; Vallée, R.; Chin, S.L. Pulse fluence dependent nanograting inscription on the surface of fused silica. Appl. Phys. Lett. 2012, 100, 251105. [Google Scholar] [CrossRef] [Green Version]
- Hwang, T.; Guo, C. Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals. J. Appl. Phys. 2010, 108, 073523. [Google Scholar] [CrossRef]
- Lou, K.; Qian, J.; Shen, D.; Wang, H.; Ding, T.; Wang, G.; Dai, Y.; Zhao, Q. Recording, erasing, and rewriting of ripples on metal surfaces by ultrashort laser pulses. Opt. Lett. 2018, 43, 1778–1781. [Google Scholar] [CrossRef]
- Bonse, J.; Krüger, J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 2010, 108, 034903. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, L.; Li, X.; Wang, C.; Lu, Y. Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains. J. Appl. Phys. 2012, 112, 103103. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, L.; Li, X.; Wang, C.; Yuan, L.; Qu, L.; Lu, Y. Adjustments of dielectrics craters and their surfaces by ultrafast laser pulse train based on localized electron dynamics control. Appl. Opt. 2013, 52, 4035–4041. [Google Scholar] [CrossRef]
- Shen, M.Y.; Carey, J.E.; Crouch, C.H.; Kandyla, M.; Stone, H.A.; Mazur, E. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Lett. 2008, 8, 2087–2091. [Google Scholar] [CrossRef]
- Ulmeanu, M.; Jipa, F.; Radu, C.; Enculescu, M.; Zamfirescu, M. Large scale microstructuring on silicon surface in air and liquid by femtosecond laser pulses. Appl. Surf. Sci. 2012, 258, 9314–9317. [Google Scholar] [CrossRef]
- Deng, G.L.; Feng, G.Y.; Liu, K.; Zhou, S. Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon. Appl. Opt. 2014, 53, 3004–3009. [Google Scholar] [CrossRef]
- Mannion, P.T.; Magee, J.; Coyne, E.; O’Connor, G.M.; Glynn, T.J. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 2004, 233, 275–287. [Google Scholar] [CrossRef]
- Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Rudenko, A.A.; Seleznev, L.V.; Sinitsyn, D.V.; Emel’yanov, V.I. Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface. Laser Phys. Lett. 2015, 12, 025902. [Google Scholar] [CrossRef]
- Raether, H. Surface Plasmons on Smooth Surfaces. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer tracts in modern physics 111; Springer: Berlin, Germany, 1988. [Google Scholar]
- Račiukaitis, G.; Brikas, M.; Gečys, P.; Voisiat, B.; Gedvilas, M. Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high? J. Laser Micro Nanoen. 2009, 4, 186–191. [Google Scholar] [CrossRef]
- Jee, Y.; Becker, M.F.; Walser, R.M. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B 1988, 5, 648–659. [Google Scholar] [CrossRef]
- Gómez, D.; Goenaga, I. On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels. Appl. Surf. Sci. 2006, 253, 2230–2236. [Google Scholar] [CrossRef]
- Ni, X.; Wang, C.; Yang, L.; Li, J.; Chai, L.; Jia, W.; Zhang, R.; Zhang, Z. Parametric study on femtosecond laser pulse ablation of Au films. Appl. Surf. Sci. 2006, 253, 1616–1619. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Li, D.; Han, W.; Zhao, K.; Chen, J. Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation. Appl. Sci. 2019, 9, 3401. https://doi.org/10.3390/app9163401
Yuan Y, Li D, Han W, Zhao K, Chen J. Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation. Applied Sciences. 2019; 9(16):3401. https://doi.org/10.3390/app9163401
Chicago/Turabian StyleYuan, Yanping, Dongfang Li, Weina Han, Kai Zhao, and Jimin Chen. 2019. "Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation" Applied Sciences 9, no. 16: 3401. https://doi.org/10.3390/app9163401
APA StyleYuan, Y., Li, D., Han, W., Zhao, K., & Chen, J. (2019). Adjustment of Surface Morphologies of Subwavelength-Rippled Structures on Titanium Using Femtosecond Lasers: The Role of Incubation. Applied Sciences, 9(16), 3401. https://doi.org/10.3390/app9163401