Apium Plants: Beyond Simple Food and Phytopharmacological Applications
Abstract
:1. Introduction
2. Habitat and Cultivation of Apium Plants
2.1. Habitat
2.2. Botany of Apium Graveolens
2.3. Cultivation
2.3.1. Temperature and Soil Requirements
2.3.2. Propagation
2.3.3. Irrigation
2.3.4. Fertilization
2.3.5. Harvesting
2.3.6. Postharvest Treatments
2.3.7. Pests and Diseases
3. Apium Plants Phytochemical Composition
4. Traditional Medicinal Uses of Apium Plants
5. Use of Apium Plants in Food Preservation
6. Pharmacological Properties of Apium Plants
6.1. Antimicrobial Activities of Apium Plants
6.2. Antioxidant Activities of Apium Plants
6.3. Anticancer Activities of Apium Plants
6.4. Anti-Inflammatory Effects of Apium Plants
6.5. Cardiovascular Effects of Apium Plants
6.6. Central Nervous System Related Effects
6.7. Diabetes Mellitus and Dyslipidemia
6.8. Hepatoprotective Effect of Apium Plants
6.9. Renal Disorders
6.10. Reproductive Issues
6.11. Osteoarthritis
6.12. Osteoporosis
6.13. Diarrhea
6.14. Hyperthyroid
6.15. Dandruff
6.16. Bioactivities of Phytochemicals Identified in Apium spp.
7. Clinical Effectiveness of Apium Plants in Human
7.1. Kidney Inflammation
7.2. Gastric Disorders
7.3. Central Nervous System Related Effects
7.4. Hyperlipidemic Effect
8. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sowbhagya, H.B.; Srinivas, P.; Krishnamurthy, N. Effect of enzymes on extraction of volatiles from celery seeds. Food Chem. 2010, 120, 230–234. [Google Scholar] [CrossRef]
- Malhotra, S.K. Celery. In Handbook of Herbs and Spices, 2nd ed.; Woodhead Publishing Limited: Sawston, UK, 2012. [Google Scholar]
- Roslon, W.; Osinska, E.; Gajc-Wolska, J. The influence of raw material stabilization on the quality of celery (Apium graveolens L.) leaves. Acta Hortic. 2010, 877, 201–208. [Google Scholar] [CrossRef]
- Mezeyová, I.; Hegedűsová, A.; Mezey, J.; Šlosár, M.; Farkaš, J. Evaluation of quantitative and qualitative characteristics of selected celery (Apium graveolens var. Dulce) varieties in the context of juices production. Potravin. Potr. S. J. F. 2018, 12, 173–179. [Google Scholar] [CrossRef]
- Sellami, I.H.; Bettaieb, I.; Bourgou, S.; Dahmani, R.; Limam, F.; Marzouk, B. Essential oil and aroma composition of leaves, stalks and roots of celery (Apium graveolens var. dulce) from Tunisia. J. Essent. Oil Res. 2012, 24, 513–521. [Google Scholar] [CrossRef]
- Sarshar, S.S.; Sendker, J.; Qin, X.; Goycoolea, F.M.; Asadi, K.M.R.; Habibi, M.; Bouzari, S.; Dobrindt, U.; Hensel, A. Antiadhesive hydroalcoholic extract from Apium graveolens fruits prevents bladder and kidney infection against uropathogenic E coli. Fitoterapia 2018, 127, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Gijbels, M.J.M.; Fischer, F.C.; Scheffer, J.J.C.; Svendsen, A.B. Phthalides in roots of Apium graveolens var. rapaceum, Bifora testiculate and Petroselinum crispum. Fitoterapia 1985, 56, 17–23. [Google Scholar]
- Kavalali, G.; Akcasu, A. Isolation of choline ascorbate from Apium graveolens. J. Nat. Prod. 1985, 48, 495. [Google Scholar] [CrossRef]
- Mencherini, T.; Cau, A.; Bianco, G.; Della Loggia, R.; Aquino, R.P.; Autore, G. An extract of Apium graveolens var. dulce leaves: Structure of the major constituent, apiin, and its anti-inflammatory properties. J. Pharm. Pharm. 2007, 59, 891–897. [Google Scholar] [CrossRef]
- Kokotkiewicz, A.; Luczkiewicz, M. Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 325–338. [Google Scholar]
- Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105. [Google Scholar] [CrossRef]
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Perumalraja, R.; Sharief, S.D. Antihyperlipidemic activity of ethanolic extract of celery leaves on rats rattus norvegicus. Nat. Environ. Pollut. Technol. 2014, 13, 433–436. [Google Scholar]
- Covington, M.B. Traditional Chinese medicine in the treatment of diabetes. Diabetes Spectr. 2001, 14, 154–159. [Google Scholar] [CrossRef]
- Syed, S.F.; Rajeev, K.S. Review on the pharmacognostical & pharmacological characterization of Apium graveolens Linn. Indo Glob. J. Pharm. Sci. 2012, 2, 36–42. [Google Scholar]
- Singh, A.; Handa, S. Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. J. Ethnopharmacol. 1995, 49, 119–126. [Google Scholar] [CrossRef]
- Ehsanullah, M.; Asif, M.; Asif, S.M.; Amin, K.M. Effects of Bekh-k-Karafs (Apium graveolens linn) root on central nervous system. Anc. Sci. Life 1990, 10, 98. [Google Scholar] [PubMed]
- Zhou, Y.; Taylor, B.; Smith, T.J.; Liu, Z.P.; Clench, M.; Davies, N.W.; Rainford, K.D. A novel compound from celery seed with a bactericidal effect against Helicobacter pylori. J. Pharm. Pharmacol. 2009, 6, 1067–1077. [Google Scholar] [CrossRef]
- Sowbhagya, H.B.; Sampathu, S.R.; Krishnamurthy, N. Evaluation of size reduction on the yield and quality of celery seed oil. J. Food Eng. 2007, 80, 1255–1260. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Deans, S.G. Bioactivity of selected plant essential oils against Listeria monocytogenes. J. Appl. Microbiol. 1997, 82, 759–762. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Dias dos Santos, S.M.; Pintado, M.E.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control. 2013, 32, 371–378. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Frau, M.A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: Chemical composition and antifungal activity. Nat. Prod. Res. 2013, 27, 1521–1527. [Google Scholar] [CrossRef]
- Kooti, W.; Ali-Akbari, S.; Asadi-Samani, M.; Ghadery, H.; Ashtary-Larky, D. A review on medicinal plant of Apium graveolens. Adv. Herb. Med. 2014, 1, 48–59. [Google Scholar]
- Tankeo, S.B.; Lacmata, S.T.; Noumedem, J.A.; Dzoyem, J.P.; Kuiate, J.R.; Kuete, V. Antibacterial and antibiotic-potentiation activities of some Cameroonian food plants against multi-drug resistant gramnegative bacteria. Chin. J. Integr. Med. 2014, 20, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Shanmugapriya, R.; Ushadevi, T. In vitro Antibacterial and Antioxidant Activities of Apium graveolens L. Seed extracts. Int. J. Drug Dev. Res. 2014, 6, 165–170. [Google Scholar]
- Al-Sa’aidi, J.A.; Alrodhan, M.N.; Ismael, A.K. Antioxidant activity of n-butanol extract of celery (Apium graveolens) seed in streptozotocin-induced diabetic male rats. Res. Pharm. Biotechnol. 2012, 4, 24–29. [Google Scholar] [CrossRef]
- Wen, T.Q.; Lu, W.; Chen, F.X.; Song, H.S.; Zhao, C.P.; Yu, T. Apium graveolens L. accelerating differentiation of neural stem cells in vitro. J. Shanghai Univ. 2006, 10, 89–94. [Google Scholar] [CrossRef]
- Taupin, P. Apigenin and related compounds stimulate adult neurogenesis. Expert Opin. Ther. Pat. 2009, 19, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Chonpathompikunlert, P.; Boonruamkaew, P.; Sukketsiri, W.; Hutamekalin, P.; Sroyraya, M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Compl. Alt. Med. 2018, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Fazal, S.S.; Singla, R.K. Review on the pharmacognostical & pharmacological characterization of Apium graveolens Linn. Indo Glob. J. Pharmaceut. Sci. 2012, 2, 36–42. [Google Scholar]
- The Plant List. Available online: www.theplantlist.org (accessed on 12 August 2019).
- Tanasawet, S.; Boonruamkaew, P.; Sukketsiri, W.; Chonpathompikunlert, P. Anxiolytic and free radical scavenging potential of Chinese celery (Apium graveolens) extract in mice. Asian Pac. J. Trop. Biomed. 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Wang, S.; Yang, W.; Shen, H. Genetic diversity in Apium graveolens and related species revealed by SRAP and SSR markers. Sci. Hortic. 2011, 129, 1–8. [Google Scholar] [CrossRef]
- Asif, H.M.; Akram, M.; Usmanghani, K.; Akhtar, N.; Shah, P.A.; Uzair, M.; Ramzan, M.; Shah, S.M.A.; Rehman, R. Monograph of Apium graveolens Linn. J. Med. Plants Res. 2011, 5, 1494–1496. [Google Scholar]
- Malhotra, S. Celery. In Handbook of Herbs and Spices; Elsevier: Amsterdam, The Netherlands, 2006; Volume 3, pp. 317–336. [Google Scholar]
- Farooqi, A.; Kathiresan, C.; Srinivasappa, K. Agricultural Sciences, India. In Handbook of Herbs and Spices; Woodhead Publishing: Cambridge, UK, 2006; p. 313. [Google Scholar]
- Burmeier, S.; Jensen, K.A.I. Is the endangered Apium repens (Jacq.) Lag. rare because of a narrow regeneration niche? Plant. Species Biol. 2008, 23, 111–118. [Google Scholar] [CrossRef]
- Ronse, A.; Popper, Z.; Preston, J.; Watson, M. Taxonomic revision of European Apium L. s.l.: Helosciadium, W.D.J.Koch restored. Plant. Syst. Evol. 2010, 287, 1–17. [Google Scholar] [CrossRef]
- Rubatzky, V.; Yamaguchi, M. Carrot, Celery, and Other Vegetable Umbels. In World Vegetables: Principles, Production, and Nutritive Values; Chapman & Hall: New York, NY, USA, 1997; pp. 418–456. [Google Scholar]
- Pressman, E.; Shaked, R.; Negbi, M. Germination of seeds of annual and biennial celery (Apium graveolens). Physiol. Plant. 1988, 72, 65–69. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, J.; Uppal, S. Intercropping of medicinal and high value crops in autumn sugarcane (Saccharum spp. hybrid) for higher productivity and profitability. Indian J. Agron. 2015, 60, 135–138. [Google Scholar]
- Baumann, D.T.; Bastiaans, L.; Goudriaan, J.; van Laar, H.; Kropff, M. Analysing crop yield and plant quality in an intercropping system using an eco-physiological model for interplant competition. Agric. Syst. 2002, 73, 173–203. [Google Scholar] [CrossRef]
- Charles, K.S.; Ngouajio, M.; Warncke, D.D.; Poff, K.L.; Hausbeck, M.K. Integration of cover crops and fertilizer rates for weed management in celery. Weed Sci. 2006, 54, 326–334. [Google Scholar] [CrossRef]
- Jenni, S.; Gamache, I.; Côté, J.C.; Stewart, K.A. Plastic mulches and low tunnels to reduce bolting and increase marketable yield of early celery. J. Veg. Sci. 2006, 12, 57–73. [Google Scholar] [CrossRef]
- Tanwar, A.; Yadav, K.; Prasad, K.; Aggarwal, A. Biological amendments on growth, nutritional quality, and yield of celery. Intern. J. Veg. Sci. 2013, 19, 228–239. [Google Scholar] [CrossRef]
- Alt, C.; Wiebe, H.-J. Flower formation in celeriac (Apium graveolens L. var. rapaceum) II. Modelling the risk of bolting. Gartenbauwissenschaft 2001, 66, 46–50. [Google Scholar]
- Booij, R.; Meurs, E.J.J. Flowering in celeriac (Apium graveolens L. var. rapaceum (Mill.) DC.): Effects of photoperiod. Sci. Hortic. 1994, 58, 271–282. [Google Scholar] [CrossRef]
- Ramin, A.A.; Atherton, J.G. Manipulation of bolting and flowering in celery (Apium graveolens L.var. dulce). III.Effects of photoperiod and irradiance. J. Hortic. Sci. 1994, 69, 861–868. [Google Scholar] [CrossRef]
- Pressman, E.; Negbi, M. The effect of day length on the response of celery to vernalization. J. Exp. Bot. 1980, 31, 1291–1296. [Google Scholar] [CrossRef]
- Chorianopoulou, S.N.; Bouranis, D.L.; Drossopoulos, J.B. Oxygen transport by Apium nodiflorum. J. Plant. Physiol. 2001, 158, 905–913. [Google Scholar] [CrossRef]
- Mechora, Š.; Čalasan, A.Ž.; Felicijan, M.; Krajnc, A.U.; Ambrožič-Dolinšek, J. The impact of selenium treatment on some physiological and antioxidant properties of Apium repens. Aquat. Bot. 2017, 138, 16–23. [Google Scholar] [CrossRef]
- Rosenthal, G.; Lederbogen, D. Response of the clonal plant Apium repens (Jacq.) Lag. to extensive grazing. Flora-Morphol. Dis. Funct. Ecol. Plants 2008, 203, 141–151. [Google Scholar] [CrossRef]
- Baninasab, B. Responses of wild celery (Apium graveolens) seeds to light and temperature. Acta Hortic. 2011, 907, 247–250. [Google Scholar] [CrossRef]
- Desai, B.; Kotecha, D.; Salunkhe, P. Seeds Handbook; Marcel Dekker Inc. Pub.: New York, NY, USA, 1997. [Google Scholar]
- Thomas, T. Is there a circadian germination response to red light in celery (Apium graveolens L.) seeds? Plant. Growth Regul. 2002, 37, 31–35. [Google Scholar] [CrossRef]
- Coolbear, P.; Toledo, P.E.; Seetagoses, U. Effects of temperature of pre-sowing hydration treatment and subsequent drying rates on the germination performance of celery seed. N. Zeal. J. Crop. Hortic. Sci. 1991, 19, 9–14. [Google Scholar] [CrossRef]
- Rożek, E. Reaction of leaf celery (Apium graveolens L. var. secalinum) to planting density and irrigation. Veg. Crop. Res. Bull. 2007, 66, 69–77. [Google Scholar]
- Rożek, E. Effect of plant density and irrigation upon yield and selected technological features of some celeriac (Apium graveolens L. var. rapaceum) cultivars. Acta Sci. Pol.-Hortoru. 2009, 8, 79–85. [Google Scholar]
- Rożek, E.; Nurzyńska-Wierdak, R.; Dzida, K. Factors modifying yield quantity and quality, as well as the chemical composition of the leaves of leaf celery Apium graveolens L. var. secalinum grown from seedlings. Acta Sci. Pol.-Hortoru. 2012, 11, 201–210. [Google Scholar]
- Evers, A.; Ketoja, E.; Hägg, M.; Pllami, S.; Häkinnen, U.; Pessala, R. Decreased nitrogen rates and irrigation effect on celery yield and internal quality. Plant. Food Hum. Nutr. 1997, 51, 173–186. [Google Scholar] [CrossRef]
- Kreck, M.; Dietrich, H.; Patz, C.-D.; Ludwig, M.; Paschold, P.J.; Both, S.; Schrenk, D. Characterization of celery juices from different celery cultivars and different irrigation levels. Dtsch. Lebensm.-Rundsch. 2006, 102, 17–24. [Google Scholar]
- Rożek, E.; Nurzyńska-Wierdak, R.; Sałata, A.; Gumiela, P. The chemical composition of the essential oil of leaf celery (Apium graveolens L. var. Secalinum Alef.) under the plants’ irrigation and harvesting method. Acta Sci. Pol.-Hortoru. 2016, 15, 147–157. [Google Scholar]
- Grewal, H.S.; Maheshwari, B.L. Treated effluent and saline water irrigation influences soil properties, yield, water productivity and sodium content of snow peas and celery. J. Plant. Nutri. 2013, 36, 1102–1119. [Google Scholar] [CrossRef]
- Leatherwood, W.R.; Pharr, D.M.; Dean, L.O.; Williamson, J.D. Carbohydrate content and root growth in seeds germinated under salt stress. J. Am. Soc. Hortic. Sci. 2007, 132, 876–882. [Google Scholar] [CrossRef]
- Leonardi, C. Dry matter yield and nitrogen content in celery under salt stress conditions. Acta Hortic. 1998, 458, 257–261. [Google Scholar] [CrossRef]
- Pardossi, A.; Bagnoli, G.; Malorgio, F.; Campiotti, C.; Tognoni, F. NaCl effects on celery (Apium graveolens L.) grown in NFT. Sci. Hortic. 1999, 81, 229–242. [Google Scholar] [CrossRef]
- Breschini, S.J.; Hartz, T.K. Drip irrigation management affects celery yield and quality. HortScience 2002, 37, 894–897. [Google Scholar] [CrossRef]
- Ogbuchiekwe, E.J.; Mcgiffen, M.E. Efficacy and Economic Value of Weed Control for Drip and Sprinkler Irrigated Celery. HortScience 2001, 36, 1278–1282. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Shao, L.; Ma, M. Deep percolation in greenhouse-cultivated celery using the technique of subsurface film strips placement. Span. J. Agric. Res. 2014, 12, 519–526. [Google Scholar] [CrossRef]
- Christiansen, J.S.; Thorup-Kristensen, K.; Kristensen, H.L. Root development of beetroot, sweet corn and celeriac, and soil N content after incorporation of green manure. J. Hortic. Sci. Biotechnol. 2006, 81, 831–838. [Google Scholar] [CrossRef]
- Derolez, J.; Vulsteke, G. Accumulation of nitrate: A cultivar-linked property with celeriac (Apium graveolens L. var. rapaceum). Qual. Plant. 1985, 35, 375–378. [Google Scholar] [CrossRef]
- Du, Y.; Niu, W.; Zhang, Q.; Cui, B.; Gu, X.; Guo, L.; Liang, B. Effects of nitrogen on soil microbial abundance, enzyme activity, and nitrogen use efficiency in greenhouse celery under aerated irrigation. Soil Sci. Soc. Am. J. 2018, 82, 606–613. [Google Scholar] [CrossRef]
- Madrid, R.; López, M.D.; Barba, E.M.; Gómez, P.; Artés, F. Influence of nitrate fertilizer on macronutrient contents of celery plants on soil-less culture. J. Plant. Nutr. 2008, 31, 55–67. [Google Scholar] [CrossRef]
- Min, J.; Zhao, X.; Wei-Ming, S.; Xing, G.-X.; Zhu, Z.-L. Nitrogen balance and loss in a greenhouse vegetable system in Southeastern China. Pedosphere 2011, 464–472. [Google Scholar] [CrossRef]
- Kolota, E.; Osinska, M.; Biesiada, A. Yield of early celeriac in relation to agronomic variables. Acta Hortic. 2000, 533, 469–473. [Google Scholar] [CrossRef]
- Inthichack, P.; Nishimura, Y.; Fukumoto, Y. Effect of potassium sources and rates on plant growth, mineral absorption, and the incidence of tip burn in cabbage, celery, and lettuce. Hortic. Environ. Biotechnol. 2012, 53, 135–142. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Li, J.; Ao, Y. Effect of phosphorus on celery growth and nutrient uptake under different calcium and magnesium levels in substrate culture. Hortic. Sci. 2010, 37, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Olle, M.; Bender, I. Causes and control of calcium deficiency disorders in vegetables: A review. J. Hortic. Sci. Biotechnol. 2009, 84, 577–584. [Google Scholar] [CrossRef]
- Bellaloui, N.; Brown, P.H. Cultivar differences in boron uptake and distribution in celery (Apium graveolens), tomato (Lycopersicon esculentum) and wheat (Triticum aestivum). Plant. Soil 1998, 198, 153–158. [Google Scholar] [CrossRef]
- Guerra, N.; Carrozzi, L.; Goñi, M.G.; Roura, S.; Yommi, A. Quality characterization of celery (Apium graveolens L.) by plant zones and two harvest dates. J. Food Sci. 2010, 75, S327–S332. [Google Scholar] [CrossRef] [PubMed]
- Rożek, E.; Nurzyńska-Wierdak, R.; Kosior, M. Efficiency of some agrotechnical treatments in quantity and quality yield modification of leaf celery (Apium graveolens L.). Acta Sci. Pol.-Hortoru. 2013, 12, 227–239. [Google Scholar]
- Yommi, A.K.; Gerónimo Di, M.N.; Carrozzi, L.E.; Quillehauquy, V.; Goñi, M.G.; Roura, S.I. Morphological, physicochemical and sensory evaluation of celery harvested from early to late maturity. Hortic. Bras. 2013, 31, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Wang, S.; Yang, W.; Shen, H. Inheritance of white petiole in celery and development of a tightly linked SCAR marker. Plant. Breed. 2012, 131, 340–344. [Google Scholar] [CrossRef]
- Berardinelli, A.; Pasquali, F.; Cevoli, C.; Trevisani, M.; Ragni, L.; Mancusi, R.; Manfreda, G. Sanitisation of fresh-cut celery and radicchio by gas plasma treatments in water medium. Postharvest Biol. Technol. 2016, 111, 297–304. [Google Scholar] [CrossRef]
- Hernández, A.E.; Julio, C.; Cardozo, M.; Estela, C.; Flores, R.; Andrés, J.; Gómez, P. Application of heat treatment, edible coating and chemical dip as postharvest treatments for the conservation of fresh-cut vegetables. Acta AgronóMica 2014, 63, 1–10. [Google Scholar]
- Viña, S.; Chaves, A.R. Effect of heat treatment and refrigerated storage on antioxidant properties of pre-cut celery (Apium graveolens L.). Inter. J. Food Sci. Technol. 2008, 43, 44–51. [Google Scholar] [CrossRef]
- Viña, S.; Osornio, M.M.L.; Chaves, A.R. Quality changes in fresh-cut celery as affected by heat treatment and storage. J. Sci. Food Agric. 2007, 87, 1400–1407. [Google Scholar] [CrossRef]
- González-Buesa, J.; Page, N.; Kaminski, C.; Ryser, E.T.; Beaudry, R.; Almenar, E. Effect of non-conventional atmospheres and bio-based packaging on the quality and safety of Listeria monocytogenes -inoculated fresh-cut celery (Apium graveolens L.) during storage. Postharvest Biol. Technol. 2014, 93, 29–37. [Google Scholar] [CrossRef]
- Rizzo, V.; Muratore, G. Effects of packaging on shelf life of fresh celery. J. Food Eng. 2009, 90, 124–128. [Google Scholar] [CrossRef]
- Gómez, P.; Artés-Hernández, F.; Artés, F. Controlled atmosphere effects on sugar content and respiratory activity of green celery. Acta Hortic. 2010, 857, 31–36. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E.; Czapski, J.; Katarzyna, C.; Biegańska-Marecik, R. The effect of pre-treatment and modified atmosphere packaging on contents of phenolic compounds and sensory and microbiological quality of shredded celeriac. J. Sci. Food Agric. 2014, 94, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Tamer, C.E.; Çopur, Ö.U.; İncedayi, B.; Vural, H. Evaluation of some quality parameters of minimaly processed celery by quantitative analysis. J. Food Process. Technol. 2012, 1–10. [Google Scholar] [CrossRef]
- Zhan, L.; Hu, J.; Lim, L.-T.; Pang, L.; Li, Y.; Shao, J. Light exposure inhibiting tissue browning and improving antioxidant capacity of fresh-cut celery (Apium graveolens var. dulce). Food Chem. 2013, 141, 2473–2478. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Ren, G. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT—Food Sci. Technol. 2011, 44, 181–185. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Sunić, L.J.; Milenković, L. Extended harvest time improves the shelf life of celeriac (Apium graveolens var. rapaceum) through postharvest treatment and storage conditions. Acta Hortic. 2016, 1142, 269–276. [Google Scholar]
- Rossi, S.; Cools, K.; Terry, L.A. The influence of crop maturity and ethylene on postharvest browning in celery. Acta Hortic. 2018, 1194, 13–18. [Google Scholar] [CrossRef]
- Mirecki, N.; Ilić, Z.S.; Šunic, L.; Rukie, A. Nitrate content in carrot, celeriac and parsnip at harvest time and during prolonged cold storage. Fresenius Environ. Bull. 2015, 24, 3266–3273. [Google Scholar]
- Gómez, P.; Artés, F.; Madrid, R. Nitrogen fertiliser rate and controlled atmospheres effects on the nitrate levels and quality of fresh processed celery sticks. Acta Hortic. 2003, 75, 1–4. [Google Scholar] [CrossRef]
- Manal, A.S.; Naglaa, H.M.H.; Mona, H.M.A. Natural Antioxidant Changes in Fresh and Dried celery (Apium graveolens). Am. J. Energy Eng. 2015, 3, 12–16. [Google Scholar]
- Sahoo, H.B.; Das Santani, D.; Sagar, R. Chemopreventive potential of Apium leptophyllum (Pers.) against DMBA induced skin carcinogenesis model by modulatory influence on biochemical and antioxidant biomarkers in Swiss mice. Indian J. Pharmacol. 2014, 46, 531–537. [Google Scholar] [PubMed]
- Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Phenolic Acids from Plants: Extraction and Application to Human Health. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 58, pp. 389–417. [Google Scholar]
- Al-Moubaraki, A.H.; Al-Howiti, A.A.; Al-Dailami, M.M.; Al-Ghamdi, E.A. Role of aqueous extract of celery (Apium graveolens L.) seeds against the corrosion of aluminium/sodium hydroxide systems. J. Environ. Chem. Eng. 2017, 5, 4194–4205. [Google Scholar] [CrossRef]
- Sowbhagya, H. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): An overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Zujovic, Z.; Chen, D.; Melton, L. Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid–state (13) C NMR. Carbohydr. Res. 2016, 420, 51–57. [Google Scholar] [CrossRef]
- Jorge, V.; Ángel, J.; Adrián, T.; Francisco, A.; Anuar, S.; Samuel, E.; Ángel, S.; Emmanuel, H. Vasorelaxant activity of extracts obtained from Apium graveolens: Possible source for vasorelaxant molecules isolation with potential antihypertensive effect. Asian Pac. J. Trop. Biomed. 2013, 3, 776–779. [Google Scholar] [CrossRef]
- Sahoo, H.; Sagar, R.; Kumar, A.; Bhaiji, A.; Bhattamishra, S. Antidiarrhoeal investigation of Apium leptophyllum (Pers.) by modulation of Na+K+ATPase, nitrous oxide and intestinal transit in rats. Biomed. J. 2016, 39, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Momin, R.A.; Nair, M.G. Antioxidant, cyclooxygenase and topoisomerase inhibitory compounds from Apium graveolens Linn. seeds. Phytomedicine 2002, 9, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, J. Is chemo–preventive effect of Apium leptophyllum (Pers.) caused only by anti–oxidative property of flavonoids? Indian J. Pharmacol. 2015, 47, 341–342. [Google Scholar] [CrossRef]
- Baananou, S.; Bouftira, I.; Mahmoud, A.; Boukel, K.; Marongiu, B.; Boughattas, N.A. Antiulcerogenic and antibacterial activities of Apium graveolens essential oil and extract. Nat. Prod. Res. 2013, 27, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Bjeldanes, L.F.; Kim, I.S. Phtalide components of celery essential oil. J. Org. Chem. 1977, 42, 2333–2335. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Y.; Hartman, T.G.; Rosen, R.T.; Ho, C.T. Free and glycosidically bound volatile compounds in fresh celery (Apium graveolens L.). J. Agric. Food Chem. 1990, 38, 1937–1940. [Google Scholar] [CrossRef]
- Pino, J.A.; Rosado, A.; Fuentes, V. Leaf oil of celery (Apium graveolens L.) from Cuba. J. Essent. Oil Res. 1997, 9, 719–720. [Google Scholar] [CrossRef]
- Jung, W.; Chung, I.; Kim, S.; Kim, M.; Ahmad, A.; Praveen, N. In vitro antioxidant activity, total phenolics and flavonoids from celery (Apium graveolens) leaves. J. Med. Plants Res. 2011, 5, 7022–7030. [Google Scholar]
- Al-Asmari, A.K.; Athar, T.; Kadasah, S.G. An Updated Phytopharmacological Review on Medicinal Plant of Arab Region: Apium graveolens Linn. Pharmacogn. Rev. 2017, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Coelho de Souza, G.; Haas, A.P.S.; Von Poser, G.L.; Schapoval, E.E.S.; Elisabetsky, E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J. Ethnopharmacol. 2004, 90, 135–143. [Google Scholar] [CrossRef]
- Duraipandiyan, V.; Ignacimuthu, S. Antifungal activity of traditional medicinal plants from Tamil Nadu, India. Asian Pac. J. Trop. Biomed. 2011, 2011, 204–215. [Google Scholar] [CrossRef]
- Kalsoom Qureshi, S.J.; Neelam, M.A.; Muhammad, Z.A.; Riffat, J. Anti-Leishmanial, Anti-Fungal, Brine Shrimp Lethality, Anti-Leishmanial and Insecticidal Assay of Apium graveolens Lavailable in Khyber Pakhtunkhwa-Pakistan. Pharma Innov. J. 2014, 3, 51–54. [Google Scholar]
- Skalicka-Woźniak, K.; Orhan, I.E.; Cordell, G.A.; Nabavi, S.M.; Budzyńska, B. Implication of coumarins towards central nervous system disorders. Pharmacol. Res. 2016, 103, 188–203. [Google Scholar] [CrossRef]
- Kooti, W.; Daraei, N. A Review of the Antioxidant Activity of Celery (Apium graveolens L.). J. Evid.-Based Complement. Altern. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, P.A. Iranian Medicinal and Aromatic Plants; Islamic Azad University: Shahrekord, Iran, 2009. [Google Scholar]
- Tang, S.; Halliwell, B. Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? Biochem. Biophys. Res. Commun. 2010, 394, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.A.M.; Mortazavi, M.; Kalani, N.; Zare Marzouni, H.; Kooti, W.; Ali-Akbari, S. Effect of hydroalcoholic extract of Rosmarinus officinalis L. leaf on anxiety in mice. J. Evid.-Based Complement. Altern. Med. 2016, 2016, NP85–NP90. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Samani, M.; Kafash-Farkhad, N.; Azimi, N.; Fasihi, A.; Alinia-Ahandani, E.; Rafieian-Kopaei, M. Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pac. J. Trop. Biomed. 2015, 5, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Kerishchi, P.; Nasri, S.; Amin, G.; Tabibian, M. The effects of Apium graveolens extract on sperm parameters and HG hormonal axis in mice. In Proceedings of the 20th Iranian Congress of Physiology and Pharmacology, Hamadan, Iran, 10–14 October 2011. [Google Scholar]
- Hamza, A.; Amin, A. Apium graveolens modulates sodium valproate-induced reproductive toxicity in rats. J. Exp. Zool. A Ecol. Genet. Physiol. 2007, 307, 199–206. [Google Scholar] [CrossRef]
- Hardani, A.; Afzalzadeh, M.; Amirzargar, A.; Mansouri, E.; Meamar, Z. Effects of aqueous extract of celery (Apium graveolens L.). leaves on spermatogenesis in healthy male rats. Avicenna J. Phytomed. 2015, 5, 113. [Google Scholar]
- Esrafil, M.; Maryam, G.; Majid, A.S.; Fatima, A.; Damoon, A.-L.; Najmeh, K.F.; Wesam, K.; Ameneh, H.; Ashraf, A.Z. The Effect of Hydro-Alcoholic Extract of Apium graveolens L. Leaf on Delivery Rate in Female Rats, Weight and Gender Ratio of Infants. Jundishapur J. Nat. Pharm. Prod. 2017, 12, 1–5. [Google Scholar]
- Lans, C. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J. Ethnobiol. Ethnomed. 2006, 2, 45. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [Green Version]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Sci. 2006, 73, 236–244. [Google Scholar] [CrossRef]
- Hassanen, N.H.; Eissa, A.M.F.; Hafez, S.A.M.; Mosa, E.A.M. Antioxidant and antimicrobial activity of celery (Apium graveolens) and coriander (Coriandrum sativum) herb and seed essential oils. Intern. J. Curr. Microbiol. Appl. Sci. 2015, 4, 284–296. [Google Scholar]
- Misic, D.; Zizovic, I.; Stamenic, M.; Asanin, R.; Ristic, M.; Petrovic, S.D.; Skala, D. Antimicrobial activity of celery fruit isolates and SFE process modeling. J. Biomech. Eng. 2008, 42, 148–152. [Google Scholar]
- Maleki, M. Effects of celery extracts on the oxidative stability of canola oil under thermal condition. J. Food Process. Pres. 2016, 40, 531–540. [Google Scholar] [CrossRef]
- Yao, Y.; Sang, W.; Zhou, M.J.; Ren, G.X. Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. J. Food Sci. 2010, 75, C9–C13. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.; Kulchaiyawat, C.; Sullivan, G.; Sebranek, J.; Dickson, J. Use of Natural Ingredients to Control Growth of Clostridium perfringens in Naturally Cured Frankfurthers and Hams. J. Food Prot. 2011, 74, 417–424. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.; Grosse, Y.; Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599. [Google Scholar] [CrossRef]
- Cantell, M.; Elliot, C. Nitrates, nitrites and nitrosamines from processed meat intake and colorectal cancer risk. J. Clin. Nutr. Diet 2017, 3, 27. [Google Scholar]
- Xi, Y.; Sullivan, G.A.; Jackson, A.L.; Zhou, G.H.; Sebranek, J.G. Use of natural antimicrobials to improve the control of Listeria monocytogenes in a cured cooked meat model system. Meat Sci. 2011, 88, 503–511. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Bacus, J.N. Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Jackson-Davis, A.L.; Myers, K.L.; Lavieri, N.A. Beyond celery and starter culture: Advances in natural/organic curing processes in the United States. Meat Sci. 2012, 92, 267–273. [Google Scholar] [CrossRef]
- Chaleshtori, R.S.; Kopaei, M.R.; Salehi, E. Bioactivity of Apium petroselinum and Portulaca oleracea Essential Oils as Natural Preservatives. Jundishapur J. Microbiol. 2015, 8, e20128. [Google Scholar] [CrossRef] [PubMed]
- Nakhaei, M.M. In vitro anti-bacterial activity of methanolic extract of Apium petroselinum L. seed against clinical isolates of Helicobacter pylori. J. Daneshvar Med. 2010, 17, 63–70. [Google Scholar]
- Menghini, L.; Leporini, L.; Tirillini, B.; Epifano, F.; Genovese, S. Chemical Composition and Inhibitory Activity Against Helicobacter pylori of the Essential Oil of Apium nodiflorum (Apiaceae). J. Med. Food 2010, 13, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Horsch, A.M.; Sebranek, J.G.; Dickson, J.S.; Niebuhr, S.E.; Larson, E.M.; Lavieri, N.A.; Ruther, B.L.; Wilson, L.A. The effect of pH and nitrite concentration on the antimicrobial impact of celery juice concentrate compared with conventional sodium nitrite on Listeria monocytogenes. Meat Sci. 2014, 96, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.; Jackson-Davis, A.; Niebuhr, S.; Xi, Y.; Schrader, K.; Sebranek, J.; Dickson, J. Inhibition of Listeria monocytogenes Using Natural Antimicrobials in No-Nitrate-or-Nitrite-Added Ham. J. Food Protec. 2012, 75, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Djeri, N.; Williams, S.K. Celery juice powder used as nitrite substitute in sliced vacuum-packaged turkey bologna stored at 4C for 10 weeks under retail display light. Food Qual. Prefer. 2014, 37, 361–370. [Google Scholar] [CrossRef]
- Sindelar, J.J.; Cordray, J.C.; Sebranek, J.G.; Love, J.A.; Ahn, D.U. Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham. J. Food Sci. 2007, 72, S388–S395. [Google Scholar] [CrossRef]
- WHO. WHO Global Strategy for Containment of Antimicrobial Resistance; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Shad, A.A.; Shah, H.U.; Bakht, J.; Choudhary, M.I.; Ullah, J. Nutraceutical potential and bioassay of Apium graveolens L. grown in Khyber Pakhtunkhwa-Pakistan. J. Med. Plants Res. 2011, 5, 5160–5166. [Google Scholar]
- Maxia, A.; Falconieri, D.; Piras, A.; Porcedda, S.; Marongiu, B.; Frau, M.A.; Goncalves, M.J.; Cabral, C.; Cavaleiro, C.; Salgueiro, L. Chemical Composition and Antifungal Activity of Essential Oils and Supercritical CO2 Extracts of Apium nodiflorum (L.) Lag. Mycopathologia 2012, 174, 61–67. [Google Scholar] [CrossRef]
- Edziri, H.; Ammar, S.; Souad, L.; Mahjoub, M.A.; Mastouri, M.; Aouni, M.; Mighri, Z.; Verschaeve, L. In vitro evaluation of antimicrobial and antioxidant activities of some Tunisian vegetables. S. Afr. J. Bot. 2012, 78, 252–256. [Google Scholar] [CrossRef]
- Rani, P.; Khullar, N. Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phytother. Res. 2004, 18, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Din, Z.U.; Shad, A.A.; Bakht, J.; Ullah, I.; Jan, S. In vitro antimicrobial, antioxidant activity and phytochemical screening of Apium graveolens. Pak. J. Pharm. Sci. 2015, 28, 1699–1704. [Google Scholar]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Protec. 2002, 65, 1545–1560. [Google Scholar] [CrossRef] [PubMed]
- Penna, C.; Marino, S.; Vivot, E.; Cruanes, M.C.; Munoz, J.D.; Cruanes, J.; Ferraro, G.; Gutkind, G.; Martino, V. Antimicrobial activity of Argentine plants used in the treatment of infectious diseases. Isolation of active compounds from Sebastiania brasiliensis. J. Ethnopharmacol. 2001, 77, 37–40. [Google Scholar] [CrossRef]
- Ahmed, B.; Alam, T.; Varshney, M.; Khan, S.A. Hepatoprotective activity of two plants belonging to the Apiaceae and the Euphorbiaceae family. J. Ethnopharmacol. 2002, 79, 313–316. [Google Scholar] [CrossRef]
- Yildiz, L.; Baskan, K.S.; Tutem, E.; Apak, R. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta 2008, 77, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Nagella, P.; Ahmad, A.; Kim, S.J.; Chung, I.M. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol. Immunotoxicol. 2012, 34, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Kolarovic, J.; Popovic, M.; Zlinska, J.; Trivic, S.; Vojnovic, M. Antioxidant Activities of Celery and Parsley Juices in Rats Treated with Doxorubicin. Molecules 2010, 15, 6193–6204. [Google Scholar] [CrossRef] [Green Version]
- Abu_Darwsih, M.S.; Efferth, T. Medicinal plants from near east for cancer therapy. Front. Pharmacol. 2018, 9, 56. [Google Scholar] [CrossRef]
- Sultana, S.; Ahmed, S.; Jahangir, T.; Sharma, S. Inhibitory effect of celery extract on chemically induced hepatocarcinogenesis: Modulation of cell proliferation, metabolism and altered hepatic foci development. Cancer Lett. 2005, 221, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Al-Jumaily, R.M.K. Evaluation of anticancer activities of crude extracts of Apium graveolens L. seeds in two cell lines, RD and L20B in vitro. Iraqi J. Cancer Med. Genet. 2010, 3, 18–23. [Google Scholar]
- Octaviani, C.D.; Lusiana, M.; Zuhrotun, A.; Diantini, A.; Subarnas, A.; Abdulah, R. Anticancer properties of daily-consumed vegetables Amaranthus spinosus, Ipomoea aquatica, Apium graveolens, and Manihot utilisima to LNCaP prostate cancer cell lines. J. Nat. Pharmaceut. 2013, 4, 67–70. [Google Scholar]
- Brahmi, N.; Scognamiglio, M.; Pacifico, S.; Mekhoukhe, A.; Madani, K.; Fiorentino, A.; Monaco, P. 1H NMR basedmetabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties. Food Res. Int. 2015, 76, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.L.; Feng, L.; Yao, S.T.; Jiao, P.; Qin, S.C.; Zhang, W.; Zhang, Y.B.; Li, F.R. Molecular Mechanisms of Celery Seed Extract Induced Apoptosis via S Phase Cell Cycle Arrest in the BGC-823 Human Stomach Cancer Cell Line. Asian Pac. J. Cancer Prevent. 2011, 12, 2601–2606. [Google Scholar]
- Zidorn, C.; Johrer, K.; Ganzera, M.; Schubert, B.; Sigmund, E.M.; Mader, J.; Greil, R.; Ellmerer, E.P.; Stuppner, H. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J. Agric. Food Chem. 2005, 53, 2518–2523. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Giuliani, C.; Fico, G.; Ricciutelli, M.; Bramucci, M.; Quassinti, L.; Petrelli, D.; Vitali, L.A.; Cianfaglione, K.; Tirillini, B.; et al. Secondary metabolites, secretory structures and biological activity of water celery (Apium nodiflorum (L.) Lag.) growing in central Italy, Plant Biosystems. An. Int. J. Deal. Asp. Plant. Biol. 2018, 1, 325–335. [Google Scholar]
- Yili, A.; Ma, Q.L.; Gao, Y.H.; Zhao, B.; Jun, D.; Aisa, H.A. Isolation of two antioxidant peptides from seeds of Apium graveolens indigenous to China. Chem. Nat. Compd. 2012, 48, 719–720. [Google Scholar] [CrossRef]
- Koken, T.; Koca, B.; Koca, T.; Altunbas, K. Apium graveolens extract induces apoptosis via Bax and p-53 proteins in the LNCaP human prostate cancer cell line. FEBS OPEN BIO 2018, 8, 319. [Google Scholar]
- Young, J.F.; Christensen, L.P.; Theil, P.K.; Oksbjerg, N. The Polyacetylenes Falcarinol and Falcarindiol Affect Stress Responses in Myotube Cultures in a Biphasic Manner. Dose-Response 2008, 6, 239–251. [Google Scholar] [CrossRef]
- Peng, Y.; Xing, C.H.; Lemere, C.A.; Chen, G.Q.; Wang, L.; Feng, Y.; Wang, X.L. L-3-n-Butylphthalide ameliorates beta-amyloid-induced neuronal toxicity in cultured neuronal cells. Neurosci. Lett. 2008, 434, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.R.; Al-Khafaji, B.A.; Mohammed, N.J. Effect of Apium graveolens Leaves and Stalks in Reducing the Side Effects of Doxorubicin in Male Rabbits. Med. J. Babylon 2013, 10, 46–74. [Google Scholar]
- Saalu, L.C.; Osinubi, A.A.; Jewo, P.I.; Ajayi, G.O. An Evaluation of Influence of Citrus paradisi Seed Extract on Doxorubicin-Induced Testicular Oxidative Stress and Impaired Spermatogenesis. Asian J. Sci. Res. 2010, 3, 51–61. [Google Scholar] [CrossRef]
- Pereira, G.C.; Silva, A.M.; Diogo, C.V.; Carvalho, F.S.; Monteiro, P.; Oliveira, P.J. Drug-induced Cardiac Mitochondrial Toxicity and Protection: From Doxorubicin to Carvedilol. Curr. Pharm. Des. 2011, 17, 2113–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, S.; Atessahin, A.; Sahna, E.; Karahan, I.; Ozer, S. Protective effect of lycopene on adriamycin- induced nephrotoxicity. Toxicology 2006, 218, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Gillick, J.; Giles, S.; Bannigan, J.; Puri, P. Cell death in the early adriamycin rat model. Pediatr. Surg. Int. 2002, 18, 576–580. [Google Scholar] [PubMed]
- Ahmadi, A.; Mohagheghi, M.; Karimi, M.; Golestanha, S.A.; Naseri, M. Anticancer Effects of HESA-A in Patients with Metastatic Colon Cancer. Integr. Cancer Ther. 2009, 8, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Atta, A.H.; Alkofahi, A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J. Ethnopharmacol. 1998, 60, 117–124. [Google Scholar] [CrossRef]
- Ziyan, L.; Yongmei, Z.; Nan, Z.; Ning, T.; Baolin, L. Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med. 2007, 73, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Powanda, M.C.; Raisnford, K.D. A toxicological investigation of a celery seed extract having anti-inflammatory activity. Inflammopharmacology 2011, 19, 227–233. [Google Scholar] [CrossRef]
- Zhu, L.H.; Bao, T.H.; Deng, Y.; Li, H.; Chen, L.X. Constituents from Apium graveolens and their anti-inflammatory effects. J. Asian Nat. Prod. Res. 2017, 19, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Ovodova, R.G.; Golovchenko, V.V.; Popov, S.V.; Popova, G.Y.; Paderin, N.M.; Shashkov, A.S.; Ovodov, Y.S. Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks. Food Chem. 2009, 114, 610–615. [Google Scholar] [CrossRef]
- Moghadam, M.H.; Imenshahidi, M.; Mohajeri, S.A. Antihypertensive effect of celery seed on rat blood pressure in chronic administration. J. Med. Food 2013, 16, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Sun, J.; Hon, S.; Nylander, A.N.; Xia, W.; Feng, Y.; Wang, X.; Lemere, C.A. L-3-n-butylphthalide improves cognitive impairment and reduces amyloid-b in a transgenic model of Alzheimer’s disease. J. Neurosci. 2010, 30, 8180–8189. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-M.; Liang, W.; Ywe, D.T. Comparison of two old phytochemicals versus two newly researched plant-derived compounds: Potential for brain and other relevant ailments. Evid.-Based Complement. Altern. Med. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Khalid, Z.; Osuagwu, F.C.; Shah, B.; Roy, N.; Dillon, J.E.; Bradley, R. Celery root extract as an inducer of mania induction in a patient on venlafaxine and St. John’s wort. Postgrad. Med. 2016, 128, 682–683. [Google Scholar] [CrossRef] [PubMed]
- Boonruamkaew, P.; Sukketsiri, W.; Panichayupakaranant, P.; Kaewman, W.; Tanasawet, S.; Tipmanee, V.; Hutamekalin, P.; Chonpathompikunlert, P. Apium graveolens extract influences mood and cognition in healthy mice. J. Nat. Med. 2017, 71, 492–505. [Google Scholar] [CrossRef]
- Taskhakori-Sabzevar, T.; Ramezani, M.; Hosseinzadeh, H.; Parizadeh, A.M.R.; Movassasghi, A.R.; Ghorbani, A.; Mohajeri, S.A. Protective and hypoglycemic effects of celery seed on streptozotocin-induced diabetic rats: Experimental and histopathological evaluation. Acta Diabetol. 2016, 53, 609–619. [Google Scholar] [CrossRef]
- Syarifahnur, F.; Amiruddin, R.; Hasan, M.; Karmil, T.F.; Budiman, H. The effect of celery leaves infusa (Apium graveolens L.) on reducing level of blood glucose on rat (Rattus norvegicus) induced by alloxan. J. Med. Vet. 2018, 12, 36–39. [Google Scholar]
- Abbas, A.H. Antihyperglycemic, antihyperlipidiemic effects of ethanol extracts of Nigella sativa and Apium graveolens and their combination in streptozocin/high fat diet induced hyperglycemic mice. World J. Pharm. Pharmaceut. Sci. 2018, 7, 85–117. [Google Scholar]
- Vasanthkumar, R.; Jeevitha, M. Evaluation of antiobesity activity of Apium graveolens stems in rats. Int. J. Chem. Pharm. Sci. 2014, 5, 159–163. [Google Scholar]
- Özbek, H.; Kösem, M.; Erdoğan, E.; Özgökçe, F. Sesamum indicum L. ve Apium graveolens L. ekstreleri karboplatin hepatotoksisitesine karşı koruyucu mu? Genel. Tıp. Derg. 2004, 14, 49–55. [Google Scholar]
- Shivashri, C.; Rajarajeshwari, T.; Rajasekar, P. Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish. Fish. Physiol. Biochem. 2013, 39, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Sukketsiri, W.; Chonpathompikunlert, P.a.; Tnasawet, S.; Choosri, N.; Wongtawatchai, T. Effects of Apium graveolens extract on the oxidative stress in the liver of adjuvant-induced arthritic rats. Prev. Nutr. Food Sci. 2016, 21, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Dolati, K.; Rakshandeh, H.; Golestani, M.; Forouzanfar, F.; Sadeghnia, R.; Sadeghnia, H.R. Inhibitory effects of Apium graveolens on xanthine oxidase activity and serum uric acid levels in hyperuricemic mice. Prev. Nutr. Food Sci. 2018, 23, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ahman, A.; Ishaq, H.; Furqan, M.; Sheikh, D.; Raza, M.L.; Naqvi, B.S.; Mehmood, T. Comparative study of ethanolic and aqueous extracts of Apium graveolens L. root with furosemide for its diuretic activity and excretion of urinary metabolites in Wistar rats. Sci. Int. 2016, 28, 2503–2507. [Google Scholar]
- Ögenler, O.; Ün, İ.; Uzel, İ. Medical plants used for treatment of gynecological disorders in Ottomans in the 15th century. J. Complement. Med. Res. 2018, 7, 171–177. [Google Scholar] [CrossRef]
- Kooti, W.; Moradi, M.; Peyro, K.; Sharghi, M.; Alamiri, F.; Azami, M.; Firoozbakht, M.; Ghafourian, M. The effect of celery (Apium graveolens L.) on fertility: A systematic revies. J. Complement. Integr. Med. 2017, 15, 1–12. [Google Scholar] [CrossRef]
- Helal, M.A.M. Celery oil modulates DEHP-induced reproductive toxicity in male rats. Reprod. Biol. 2014, 14, 182–189. [Google Scholar] [CrossRef]
- Madkour, N.K. Beneficial role of celery oil in lowering the di(2-ethlyhexyl) phthalate induced testicular damage. Toxicol. Ind. Health 2014, 30, 861–872. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, M.M.; Chen, P.L.; Cao, Y.Y.; Tan, X.L. Optimization of Ultrasonic-Assisted Enzymatic Hydrolysis for the Extraction of Luteolin and Apigenin from Celery. J. Food Sci. 2011, 76, C680–C685. [Google Scholar] [CrossRef] [PubMed]
- Ardalani, H. The ethnopharmacological review of medicinal plants in uses hypertension treatment in Iranian complementary medicine. J. Herb. Drugs 2016, 7, 9–13. [Google Scholar]
- Shirani, M.; Heidari-Soureshjani, S.; Yavangi, M. Use of Iranian medicinal plants effective on male fertility indices. J. Glob. Pharma Technol. 2016, 10, 36–43. [Google Scholar]
- Jin, J.; Yu, X.; Hu, Z.; Tang, S.; Zhong, X.; Xu, J.; Shang, P.; Huang, Y.; Liu, H. Isofraxidin target TLR4/MD-2 axis to prevent osteoarthritis development. Food Funct. 2018, 9, 5641–5652. [Google Scholar] [CrossRef] [PubMed]
- Tsakova, A.P.; Surcheva, S.K.; Bankova, V.S.; Popova, M.P.; Peev, D.R.; Popivanov, P.R.; Surchev, K.L.; Ratkova, M.D.; Surchev, L.K.; Vlaskovska, M.V. The effect of Apium nodiflorum in experimental osteoporosis. Curr. Pharmaceut. Biotechnol. 2015, 16, 414–423. [Google Scholar] [CrossRef]
- Avcı, G.; Erdoğan, S.M. Tiroid fonksiyon bozukluklarında fonksiyonel besinlerin etkinliği. Kocatepe Vet. J. 2017, 10, 331–336. [Google Scholar]
- Mondon, P.; Ringenbach, C.; Doridot, E.; Genet, V. Reinforcement of barrier function and scalp homeostasis by Senkyunolide A to fight against dandruff. Int. J. Cosmet. Sci. 2017, 39, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Zhang, J.; Kenney, P.; Lam, L. Chemoprevention of Benzo [a] pyrene induced forestomach cancer in mice by natural phthlides from celery seed oil. Nutr. Cancer 1993, 19, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Frezza, C.; Gatto Agostinelli, V.; Di Cecco, M.; Ciaschetti, G.; Serafini, M.; Bianco, A. Study on the molecular composition of an indigenous Italian species: Coristospermum cuneifolium(Guss.) Bertol. Int. J. Indig. Med. Pl. 2016, 48, 1930–1938. [Google Scholar]
- Venditti, A.; Frezza, C.; Salutari, G.; Cecco, M.D.; Bianco, A. Composition of the Essential Oil of Coristospermum cuneifolium and Antimicrobial Activity Evaluation. Planta Med. Int. Open 2017, 4, e74–e81. [Google Scholar] [CrossRef]
- Peffley, D.; Sharma, C.; Hentosh, P.; Buechler, R. Perillyl alcohol and genistein differentially regulate PKB/Akt and 4E-BP1 phosphorylation as well as eIF4E/eIF4G interactions in human tumor cells. Arch. Biochem. Biophys. 2007, 465, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Yeruva, L.; Pierre, K.; Elegbede, A.; Wang, R.; Carper, S. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett. 2007, 257, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Bailey, H.H.; Attia, S.; Love, R.R.; Fass, T.; Chappell, R.; Tutsch, K.; Harris, L.; Jumonville, A.; Hansen, R.; Shapiro, G.R.; et al. Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer. Cancer Chemother. Pharmacol. 2008, 62, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Purup, S.; Larsen, E.; Christensen, L. Differential effects of falcarinol and related aliphatic C17-polyacetylenes on intestinal cell proliferation. J. Agric. Food Chem. 2009, 57, 8290–8296. [Google Scholar] [CrossRef] [PubMed]
- Bernart, M.; Cardellina II, J.; Balaschak, M.; Alexander, M.; Shoemaker, R.; Boyd, M. Cytotoxic falcarinol oxylipins from Dendropanax arboreus. J. Nat. Prod. 1996, 59, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, F.; Ruberto, G.; Amico, V.; Piattelli, M. Bioactive metabolites from sicilian marine fennel, Crithmum maritimum. J. Nat. Prod. 1993, 56, 1598–1600. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Furumi, K.; Fujii, H.; Okabe, H.; Mihashi, K.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M. Antiproleferative constituents from Umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica. Chem. Pharm. Bull. 1999, 47, 96–100. [Google Scholar] [CrossRef]
- Ahn, B.-Z.; Kim, S.-I. Relation between structure and cytotoxic activity of panaxydol analogs Analogen against L1210 cells. Arch. Pharm. 1988, 321, 61–63. [Google Scholar] [CrossRef]
- Matsunaga, H.; Katano, M.; Yamamoto, H.; Mori, M.; Takata, K. Isolation, determination and antitumor activity. Chem. Pharm. Bull. 1989, 37, 1279–1281. [Google Scholar] [CrossRef]
- Matsunaga, H.; Katano, M.; Yamamoto, H.; Fujito, H.; Mori, M.; Takata, K. Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem. Pharm. Bull. 1990, 38, 3480–3482. [Google Scholar] [CrossRef]
- Cherng, J.-M.; Shieh, D.-E.; Chiang, W.; Chang, M.-Y.; Chiang, L. Chemopreventive Effects of Minor Dietary Constituents in Common Foods on Human Cancer Cells. Biosci. Biotechnol. Biochem. 2007, 71, 1500–1504. [Google Scholar] [CrossRef] [PubMed]
- Vo, F.V.; Guthrie, N.; Chambers, A.F.; Carroll, K.K. Inhibition of proliferation of estrogen receptorpositive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett. 1997, 112, 127–133. [Google Scholar]
- Hirano, T.; Gotoh, M.; Oka, K. Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci. 1994, 55, 1061–1069. [Google Scholar] [CrossRef]
- Matsuzuki, Y.; Kurokawa, N.; Terai, S.; Matsumura, Y.; Kobayashi, N.; Okita, K. Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn. J. Cancer Res. 1996, 87, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.U.; Ryu, S.Y.; Yoon, S.K.; Jung, N.P.; Park, S.H.; Kim, K.H.; Choi, E.J.; Lee, C.O. Effects of flavonoids on the growth and cell cycle of cancer cells. Anticancer Res. 1999, 19, 5229–5233. [Google Scholar] [PubMed]
- Ikemoto, S.; Sugimura, K.; Yoshida, N.; Yasumoto, R.; Wada, S.; Yamamoto, K.; Kishimoto, T. Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 2000, 55, 951–955. [Google Scholar] [CrossRef]
- Motoo, Y.; Sawabu, N. Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines. Cancer Lett. 1994, 86, 91–95. [Google Scholar] [CrossRef]
- Pettit, G.R.; Hoard, M.S.; Doubek, D.L.; Schmidt, J.M.; Pettit, R.K.; Tackett, L.P.; Chapuis, J.C. Antineoplastic agents 338. The cancer cell growth inhibitory constituents of Terminalia arjuna (Combretaceae). J. Ethnopharmacol. 1996, 53, 57–63. [Google Scholar] [CrossRef]
- Al-Howiriny, T.; Alsheikh, A.; Aiqasoumi, S.; Al-Yahya, M.; El Tahir, K.; Rafatullah, S. Gastric antiulcer, antisecretory and cytoprotective properties of celery (Apium graveolens) in rats. Pharmaceut. Biol. 2010, 48, 786–793. [Google Scholar] [CrossRef]
- Azimi, M.; Zahedi, M.J.; Mehrabani, M.; Tajadini, H.; Zolala, F.; Baneshi, M.R.; Choopani, R.; Sharififar, F.; Asadipour, A.; Hayatbakhsh, M.M.; et al. Effect of Apium graveolens and Trachyspermum copticom on clinical symptoms of patients with functional dyspepsia. Avicenna J. Phytomed. 2017, 7, 554–564. [Google Scholar]
- Tafreshi, A.P.; Ahmadi, A.; Ghaffarpur, M.; Mostafavi, H.; Rezaeizadeh, H.; Minaie, B.; Faghihzadeh, S.; Naseri, M. An Iranian herbal-marine medicine, MS14, ameliorates experimental allergic encephalomyelitis. Phytother. Res. 2008, 22, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Habibi, G.; Farrokhnia, M. MS14, an Iranian herbal-marine compounds for the treatment of multiple sclerosis. Chin. J. Integr. Med. 2010, 16, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Tourkostani, R.; Balouni, I.A.; Moselhy, S.S.; Kumosani, T.A. A diet rich fiber improves lipid profile in rats fed on high fat diet. Turk. J. Biochem. 2009, 34, 105–111. [Google Scholar]
- Iyer, D.; Patil, U.K. Effect of chloroform and aqueous basic fraction of ethanolic extract from Apium graveolens L. in experimentally-induced hyperlipidemia in rats. J. Complement. Integr. Med. 2011. [Google Scholar] [CrossRef] [PubMed]
- Mahdian, D.; Hosseinzadeh, H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. Phytomedicine 2018. [Google Scholar] [CrossRef]
Nutrients | Value/100 g (Unit) | Nutrients | Value/100 g (Unit) | ||
---|---|---|---|---|---|
Energy | 78 kJ (18 kcal) | Amino Acids | Arg | 45 mg | |
Protein | 1.6 g | His | 25 mg | ||
Water | 88.6 g | Ile | 50 mg | ||
Carbohydrate | 2.3 g | Leu | 75 mg | ||
Fiber total | 4.2 g | Lys | 75 mg | ||
Glucides | Fructose | 100 mg | Met | 18 mg | |
Sucrose | 1710 mg | Phe | 45 mg | ||
Starch | 440 mg | Thr | 45 mg | ||
Fiber, total dietary | 1.6 g | Trp | 12 mg | ||
Sugars, total | 1.83 g | Tyr | 25 mg | ||
Lipid | 0.3 g | Val | 75 mg | ||
Lipids (fatty acids) | Palmitic acids | 65 mg | Minerals (0.9 g) | Sodium | 75 mg |
Stearic acids | 4 mg | Potassium | 320 mg | ||
Oleic acids | 13 mg | Magnesium | 9 mg | ||
Linoleic acids | 155 mg | Calcium | 70 mg | ||
Linoleic acids | 17 mg | Manganese | 150 µg | ||
Fatty acids, total saturated | 0.042 g | Iron | 530 µg | ||
Fatty acids, total monounsaturated | 0.032 g | Copper | 20 µg | ||
Fatty acids, total polyunsaturated | 0.079 g | Zinc | 310 µg | ||
Cholesterol | 0 mg | Phosphorus | 80 mg | ||
Total lipid (fat) | 0.17 g | Chloride | 150 mg | ||
Vitamins | Vitamin B12 | 0 µg | Fluoride | 14 µg | |
Carotin | 15 µg | Iodine | 3 µg | ||
Vitamin A, RAE | 22 µg | Selenium | 1–10 µg | ||
Vitamin A, IU | 449 IU | Vitamins | Vitamin B2 | 70 µg | |
Vitamin E (α–tocopherol) | 0.27 mg | Nicotinamide | 900 µg | ||
Vitamin D (D2 + D3) | 0 µg | Pantothenic acid | 510 µg | ||
Vitamin D | 0 IU | Vitamin B6 | 200 µg | ||
Vitamin K | 100 µg | Folic acid | 7 µg | ||
Vitamin B1 | 35 µg | Vitamin C | 8 mg | ||
Purines | 30 mg | Oxalic acid | 6800 µg |
Constituents | Petioles | Stem | Leaves | Seeds |
---|---|---|---|---|
Energy (K cal) | 29 | 34 | 64 | 392 |
Water (g) | 96 | 95 | 81.3 | 6.0 |
Protein (g) | 0.7 | 0.9 | 6.0 | 18.1 |
Fat (g) | 0.1 | 0.1 | 0.6 | 25.3 |
Carbohydrate (g) | 1.2 | 1.2 | 8.6 | 41.4 |
Vitamin A (IU) | 90 | 120 | 80 | 52 |
Thiamine (mg) | 0.03 | 0.03 | Trace | − |
Riboflavin (mg) | 0.02 | 0.04 | Trace | − |
Niacin (mg) | 0.3 | 0.3 | Trace | − |
Vitamin C (mg) | 7 | 10 | 6.2 | 17 |
Ca (mg) | 25 | 70 | 23 | 1767 |
Fe (mg) | 0.3 | 0.5 | 6 | 45 |
Mg (mg) | 10 | 14 | − | 440 |
P (mg) | 27 | 34 | 14 | 547 |
K (mg) | − | − | − | 1400 |
Na (mg) | − | − | 160 | |
Zn (mg) | − | − | 7 |
Use of ApiumPlants in Traditional Medicine | ||
Geography | Plant Fraction | Purpose of Use |
Europe, America, Asia | Leaves, stalks, root | Nutrition source |
Europe | Roots | Aphrodisiac |
Ancient Egypt | Seeds | Medicine |
China | Seeds | Arthritis, gout, dizziness |
India | Seeds | Diuretic, appetizer |
Use of Apium Plants in Modern Medicine | ||
Geography | Plant Fraction | Purpose of Use |
Europe | Fresh plant and seeds | Lower blood pressure, relief anxiety, reduce blood sugar |
Western | Seeds | Arthritis, gout, rheumatism, urinary tract problems. |
America | Stalks | Anti-high blood pressure, heart disease prevention. |
China | Seeds | Arthritis, rheumatism, dizziness, gout, high blood pressure, insomnia, nervousness |
India | Seeds | Arthritis, liver protection, urine problems |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, B.; Venditti, A.; Frezza, C.; Yücetepe, A.; Altuntaş, Ü.; Uluata, S.; Butnariu, M.; Sarac, I.; Shaheen, S.; A. Petropoulos, S.; et al. Apium Plants: Beyond Simple Food and Phytopharmacological Applications. Appl. Sci. 2019, 9, 3547. https://doi.org/10.3390/app9173547
Salehi B, Venditti A, Frezza C, Yücetepe A, Altuntaş Ü, Uluata S, Butnariu M, Sarac I, Shaheen S, A. Petropoulos S, et al. Apium Plants: Beyond Simple Food and Phytopharmacological Applications. Applied Sciences. 2019; 9(17):3547. https://doi.org/10.3390/app9173547
Chicago/Turabian StyleSalehi, Bahare, Alessandro Venditti, Claudio Frezza, Aysun Yücetepe, Ümit Altuntaş, Sibel Uluata, Monica Butnariu, Ioan Sarac, Shabnum Shaheen, Spyridon A. Petropoulos, and et al. 2019. "Apium Plants: Beyond Simple Food and Phytopharmacological Applications" Applied Sciences 9, no. 17: 3547. https://doi.org/10.3390/app9173547
APA StyleSalehi, B., Venditti, A., Frezza, C., Yücetepe, A., Altuntaş, Ü., Uluata, S., Butnariu, M., Sarac, I., Shaheen, S., A. Petropoulos, S., R. Matthews, K., Sibel Kılıç, C., Atanassova, M., Oluwaseun Adetunji, C., Oluwaseun Ademiluyi, A., Özçelik, B., Valere Tsouh Fokou, P., Martins, N., C. Cho, W., & Sharifi-Rad, J. (2019). Apium Plants: Beyond Simple Food and Phytopharmacological Applications. Applied Sciences, 9(17), 3547. https://doi.org/10.3390/app9173547