A Numerical Evaluation of SIFs of 2-D Functionally Graded Materials by Enriched Natural Element Method
Abstract
:Featured Application
Abstract
1. Introduction
2. 2-D Inhomogeneous Cracked Bodies
2.1. Linear Elasticity of 2-D Cracked Bodies
2.2. Modified Interaction Integral
3. Enriched Petrov-Galerkin Natural Element Method
3.1. Enriched NEM Approximation
3.2. Numerical Implementation of
4. Numerical Experiments
5. Conclusions
Funding
Conflicts of Interest
References
- Miyamoto, Y.; Kaysser, W.W.; Rabin, B.H.; Kawasaki, A.; Ford, R.G. Functionally Graded Materials: Design, Processing and Applications; Springer Science Business Media: New York, NY, USA, 1999. [Google Scholar]
- Giannakopolus, A.E.; Suresh, S.; Olsson, M. Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients. Acta Metall. Mater. 1995, 43, 1335–1354. [Google Scholar] [CrossRef]
- Cho, J.R.; Oden, J.T. Functionally graded material: A Parametric study on thermal stress characteristics using the Crank-Nicolson-Galerkin scheme. Comput. Method. Appl. Mech. Eng. 2000, 188, 17–38. [Google Scholar] [CrossRef]
- Reiter, T.; Dvorak, G.J. Micromechanical models for graded composite materials: II. Thermomechanical loading. J. Phys. Solids 1998, 46, 1655–1673. [Google Scholar] [CrossRef]
- Cho, J.R.; Ha, D.Y. Volume fraction optimization for minimizing thermal stress in Ni-Al2O3 functionally graded materials. Mater. Sci. Eng. A 2002, 334, 147–155. [Google Scholar] [CrossRef]
- Apalak, M.K. Functionally graded adhesively bonded joints. Rev. Adhesion Adhesives 2014, 1, 56–84. [Google Scholar] [CrossRef]
- Zhang, C.; Sladek, J.; Sladek, V. Crack analysis in unidirectionally and bidirectionally functionally graded materials. Int. J. Fract. 2004, 129, 385–406. [Google Scholar] [CrossRef]
- Yahia, S.A.; Atmane, H.A.; Houari, M.S.A.; Tounsi, T. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 2015, 53, 1143–1165. [Google Scholar] [CrossRef]
- Abdelaziz, H.H.; Meziane, M.A.A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.; Alwabli, A.S. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Comp. Struct. 2017, 25, 693–704. [Google Scholar]
- Bourada, F.; Bousahla, A.A.; Bourada, M.; Azzaz, A.; Zinata, A.; Tounsi, A. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory. Wind Struct. 2019, 28, 19–30. [Google Scholar]
- Cho, J.R.; Ha, D.Y. Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials. Mater. Sci. Eng. A 2001, 302, 187–196. [Google Scholar] [CrossRef]
- Birman, V.; Byrd, L.W. Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 2007, 60, 195–216. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T.; Shukla, M.; Pityana, S. Functionally graded material: An overview. In Proceedings of the World Congress on Engineering 2012 (WCE 2012), London, UK, 4–6 July 2012. [Google Scholar]
- Ivanov, I.V.; Sadowski, T.; Pietras, D. Crack propagation in functionally raded strip under thermal shock. Eur. Phys. J. Spec. Top. 2013, 222, 1587–1595. [Google Scholar] [CrossRef]
- Kim, J.H.; Paulino, G.J. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int. J. Numer. Methods Eng. 2002, 53, 1903–1935. [Google Scholar] [CrossRef]
- Tilbrook, M.T.; Moon, R.J.; Hoffman, M. Crack propagation in graded composites. Compos. Sci. Technol. 2005, 65, 201–220. [Google Scholar] [CrossRef]
- Delale, F.; Erdogan, F. The crack problem for a nonhomogeneous plane. J. Appl. Mech. 1983, 50, 609–614. [Google Scholar] [CrossRef]
- Eischen, J.W. Fracture of nonhomogeneous materials. Int. J. Fract. 1987, 34, 3–22. [Google Scholar]
- Anlas, G.; Lambros, J.; Santare, M.H. Dominance of asymptotic crack tip fields in elastic functionally graded materials. Int. J. Fract. 2002, 115(2), 193–204. [Google Scholar] [CrossRef]
- Ayhan, A.O. Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. Int. J. Solids Struct. 2007, 44, 8579–8599. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C.; List, R.D. Steady state crack propagation into media with spatially varying elastic properties. Int. J. Eng. Sci. 1978, 16, 717–730. [Google Scholar] [CrossRef]
- Gu, P.; Dao, M.; Asaro, R.J. A simplified method for calculating the crack tip field of functionally graded materials using the domain integral. J. Appl. Mech. 1999, 66, 101–108. [Google Scholar] [CrossRef]
- Anlas, G.; Santare, M.H.; Lambros, J. Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fract. 2000, 104, 131–143. [Google Scholar] [CrossRef]
- Dolbow, J.E.; Gosz, M. On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J Solids Struct. 2002, 39, 2557–2574. [Google Scholar] [CrossRef]
- Kaczmarczyk, J.; Grajcar, A. Numerical simulation and experimental investigation of cold-rolled steel cutting. Materials 2018, 11, 1263. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.N.; Rahman, S. Mesh-free analysis of cracks in isotropic functionally graded materials. Eng. Fract. Mech. 2003, 70, 1–27. [Google Scholar] [CrossRef]
- Liu, K.Y.; Long, S.Y.; Li, G.Y. A meshless local Petrov-Galerkin method for the analysis of cracks in the isotropic functionally graded material. Comp. Model. Eng. Sci. 2008, 7, 43–57. [Google Scholar]
- Cho, J.R.; Lee, H.W. Calculation of stress intensity factors in 2-D linear fracture mechanics by Petrov–Galerkin natural element method. Int. J. Numer. Methods Eng. 2014, 98, 819–839. [Google Scholar] [CrossRef]
- Sukumar, N.; Moran, A.; Belytschko, T. The natural element method in solid mechanics. Int. J. Numer. Methods Eng. 1998, 43, 839–887. [Google Scholar] [CrossRef]
- Cho, J.R.; Lee, H.W. A Petrov–Galerkin natural element method securing the numerical integration accuracy. J. Mech. Sci. Technol. 2006, 20, 94–109. [Google Scholar] [CrossRef]
- Fleming, M.; Chu, Y.A.; Moran, B.; Belytschko, T. Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 1997, 40, 1483–1504. [Google Scholar] [CrossRef]
- Pant, M.; Singh, I.V.; Mishra, B.K. A novel enrichment criterion for modeling kinked cracks using element free Galerkin method. Int. J. Mech. Sci. 2013, 68, 140–149. [Google Scholar] [CrossRef]
- Moran, B.; Shih, F. Crack tip and associated domain integrals form momentum and energy balance. Eng. Fract. Mech. 1987, 27, 615–642. [Google Scholar] [CrossRef]
- Rao, B.N.; Rahman, S. An efficient meshless method for fracture analysis of cracks. Comput. Mech. 2000, 26, 398–408. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Cho, J.R. Stress recovery techniques for natural element method in 2-D solid mechanics. J. Mech. Sci. Technol. 2016, 30, 5083–5091. [Google Scholar] [CrossRef]
- Ryicki, E.F.; Kanninen, M.F. A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 1977, 9, 931–938. [Google Scholar] [CrossRef]
- Chow, W.T.; Atluri, S.N. Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral. Comput. Mech. 1995, 16, 417–425. [Google Scholar] [CrossRef]
- ASTM. Fracture Toughness Testing and Its Applications; ASTM International: West Conshohocken, PA, USA, 1965; Volume 381, pp. 43–51. [Google Scholar]
- Erdogan, F.; Wu, B.T. The surface crack problem for a plate with functionally graded properties. ASME J. Appl. Mech. 1997, 64, 449–456. [Google Scholar] [CrossRef]
- Moës, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
Method | ||||||
---|---|---|---|---|---|---|
Uniform tension | Proposed Method | 0.1 | 1.302 | 1.843 | 2.557 | 3.504 |
10 | 0.960 | 1.150 | 1.581 | 2.176 | ||
Erdogan and Wu [40] | 0.1 | 1.297 (0.386) | 1.858 (−0.807) | 2.570 (−0.506) | 3.570 (−1.849) | |
10 | 1.002 (−4.192) | 1.229 (−6.428) | 1.588 (−0.441) | 2.176 (0.000) | ||
Kim and Paulino [] [15] | 0.1 | 1.284 (1.402) | 1.846 (−0.163) | 2.544 (0.118) | 3.496 (0.229) | |
10 | 1.003 (−4.287) | 1.228 (−6.352) | 1.588 (−0.441) | 2.175 (0.046) | ||
Rao & Rahman [] [34] | 0.1 | 1.337 (−2.618) | 1.898 (−2.898) | 2.594 (−1.426) | 3.547 (−1.212) | |
10 | 0.996 (−3.614) | 1.234 (−6.807) | 1.598 (−1.064) | 2.189 (−0.594) | ||
Bending | Proposed Method | 0.1 | 1.885 | 1.872 | 1.908 | 2.141 |
10 | 0.583 | 0.636 | 0.812 | 1.069 | ||
Erdogan and Wu [40] | 0.1 | 1.904 (−0.472) | 1.886 (−0.742) | 1.978 (−3.539) | 2.215 (−3.341) | |
10 | 0.565 (3.186) | 0.659 (−3.490) | 0.804(0.995) | 1.035 (3.285) | ||
Kim and Paulino [] [15] | 0.1 | 1.888 (−0.159) | 1.864 (0.429) | 1.943 (−0.035) | 2.145 (−0.140) | |
10 | 0.565 (3.186) | 0.659 (−3.490) | 0.804 (1.801) | 1.035 (3.285) | ||
Rao & Rahman [] [34] | 0.1 | 1.903 (−0.420) | 1.875 (−0.160) | 1.954 (−2.354) | 2.155 (−0.650) | |
10 | 0.564 (3.369) | 0.664 (−4.217) | 0.812 (0.000) | 1.045 (2.297) |
Method | ||||||
---|---|---|---|---|---|---|
Uniform tension | With enrichment | 0.1 | 1.3023 (46.902) | 1.8429 (29.041) | 2.5722 (37.785) | 3.5643 (27.587) |
10 | 0.9960 (45.050) | 1.2225 (47.706) | 1.5210 (47.843) | 2.1473 (51.041) | ||
Without enrichment | 0.1 | 0.6915 | 1.3077 | 1.6003 | 2.5810 | |
10 | 0.5473 | 0.6393 | 0.7933 | 1.0513 | ||
Bending | With enrichment | 0.1 | 1.8847 (−24.683) | 1.8719 (−12.132) | 1.9083 (−4.910) | 2.1406 (−2.406) |
10 | 0.5826(18.641) | 0.6361(7.436) | 0.8122 (9.554) | 1.0686 (15.319) | ||
Without enrichment | 0.1 | 2.3499 | 2.0990 | 2.0020 | 2.1921 | |
10 | 0.4740 | 0.5888 | 0.7346 | 0.9049 |
Present Method | Kim and Paulino [15] | Rao and Rahman [34] | ||||
---|---|---|---|---|---|---|
0.0 | 1.449 [0.951] | 0.606 [0.354] | 1.451 (−0.138) | 0.604 (0.331) | 1.448 (0.069) | 0.610 (−0.656) |
0.1 | 1.377 [0.831] | 0.589 [0.335] | 1.396 (−1.361) | 0.579 (1.727) | 1.391 (−1.006) | 0.585 (0.684) |
0.25 | 1.277 [0.673] | 0.525 [0.266] | 1.316 (−2.964) | 0.544 (−3.493) | 1.312 (−2.667) | 0.549 (−4.372) |
0.5 | 1.163 [0.460] | 0.488 [0.241] | 1.196 (−2.759) | 0.491 (−0.611) | 1.190 (−2.269) | 0.495 (−1.414) |
0.75 | 1.087 [0.357] | 0.434 [0.159] | 1.089 (−0.184) | 0.443 (−2.032) | 1.082 (0.462) | 0.446 (−2.691) |
1.0 | 1.029 [0.240] | 0.411 [0.147] | 0.993 (3.625) | 0.402 (2.239) | 0.986 (4.361) | 0.404 (1.733) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.-R. A Numerical Evaluation of SIFs of 2-D Functionally Graded Materials by Enriched Natural Element Method. Appl. Sci. 2019, 9, 3581. https://doi.org/10.3390/app9173581
Cho J-R. A Numerical Evaluation of SIFs of 2-D Functionally Graded Materials by Enriched Natural Element Method. Applied Sciences. 2019; 9(17):3581. https://doi.org/10.3390/app9173581
Chicago/Turabian StyleCho, Jin-Rae. 2019. "A Numerical Evaluation of SIFs of 2-D Functionally Graded Materials by Enriched Natural Element Method" Applied Sciences 9, no. 17: 3581. https://doi.org/10.3390/app9173581
APA StyleCho, J. -R. (2019). A Numerical Evaluation of SIFs of 2-D Functionally Graded Materials by Enriched Natural Element Method. Applied Sciences, 9(17), 3581. https://doi.org/10.3390/app9173581