Using Earthworms Eisenia fetida (Sav.) for Utilization of Expansive Littoral Plants Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Material
2.1.1. Earthworms
2.1.2. Littoral Plants
2.2. Course of the Experiment
2.2.1. Vermicomposting of Littoral Plant Waste
- 5 T vermireactors (Typha latifolia 150 g + 14 ± 0.5 g of mature E. fetida),
- 5 I vermireactors (Iris pseudacorus 150 g + 14 ± 0.5 g of mature E. fetida),
- 5 C vermireactors (Ceratophyllum demersum 150 g + 14 ± 0.5 g of mature E. fetida).
2.2.2. Analysis of E. fetida Population
2.2.3. Physico–Chemical Analysis of Littoral Waste and Vermicomposts
2.3. Statistical Analysis
3. Results and Discussion
3.1. Changes in Littoral Plant Waste
3.1.1. Macronutrient Content
3.1.2. Heavy Metal Content
3.2. Changes in E. fetida Populations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Graca, M.A.S.; Hyde, K.; Chauvet, E. Aquatic hyphomycetes and litter decomposition in tropical-subtropical low order streams. Fungal Ecol. 2016, 19, 182–189. [Google Scholar] [CrossRef]
- Gupta, R.; Mutiyar, P.K.; Rawat, N.K.; Saini, M.S.; Garg, V.K. Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia fetida. Bioresour. Technol. 2007, 98, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K.; Bharambe, G.; Chaudhari, U. Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: A low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist 2008, 28, 409–420. [Google Scholar] [CrossRef]
- Zhou, X.H.; He, Z.L.; Ding, F.H.; Li, L.G.; Stoffella, P.J. Biomass decaying and elemental release of aquatic macrophyte detritus in waterways of the Indian River Lagoon basin, South Florida, USA. Sci. Total Environ. 2018, 635, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.H.; He, Z.L.; Jones, K.D.; Li, L.G.; Stoffella, P.J. Dominating aquatic macrophytes for the removal of nutrients from waterways of the Indian River Lagoon basin, South Florida, USA. Ecol. Eng. 2017, 101, 107–119. [Google Scholar] [CrossRef]
- Bhatia, M.; Goyal, D. Analyzing remediation potential of wastewater through wetland plants: A review. Environ. Prog. Sustain. Energy 2014, 33, 9–27. [Google Scholar] [CrossRef]
- Bonanno, G.; Lo Giudice, R. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 2010, 10, 639–645. [Google Scholar] [CrossRef]
- Pandey, V.C. Phytoremediation of heavy metals from fly ash pond by Azolla Carolinian. Ecotoxicol. Environ. Saf. 2012, 82, 8–12. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Sajwan, K.S.; Naidu, R. Trace Elements in the Environment: Biogeochemistry, Biotechnology and Bioremediation; CRC Press LLC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Deng, H.; Ye, Z.H.; Wong, M.H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut. 2004, 132, 29–40. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Qu, P.; Wang, M. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands. Front. Environ. Sci. Eng. 2016, 10, 262–269. [Google Scholar] [CrossRef]
- Fitzgerald, E.J.; Caffrey, J.M.; Nesaratnam, S.T.; McLoughlin, P. Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ. Pollut. 2003, 123, 67–74. [Google Scholar] [CrossRef]
- Qian, Y.; Gallagher, F.J.; Feng, H.; Wu, M. A geochemical study of toxic metal translocation in an urban brownfield wetland. Environ. Pollut. 2012, 166, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb Cu and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.B.; Harrison, J.S. The biology of Canadian weeds. Typha latifolia L., Typha angustifolia L. and Typha x glauca Godr. Can. J. Plant Sci. 1986, 66, 361–379. [Google Scholar] [CrossRef]
- Hill, D.J.; Tarasoff, C.; Whitworth, G.E.; Baron, J.; Bradshaw, J.L.; Church, J.S. Utility of unmanned aerial vehicles for mapping invasive plant species: A case study on yellow flag iris (Iris pseudacorus L.). Int. J. Remote Sens. 2017, 38, 2083–2105. [Google Scholar] [CrossRef]
- Dollerup, K.; Riis, T.; Clayton, J.S. Do patterns of establishment support invasive status of five aquatic plants in New Zealand? J. Aquati. Plant Manag. 2013, 51, 1–6. [Google Scholar]
- Ndegwa, P.M.; Thompson, S.A. Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresour. Technol. 2001, 76, 107–112. [Google Scholar] [CrossRef]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 1–21. [Google Scholar] [CrossRef]
- Singh, J.; Kalamdhad, A.S. Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecol. Eng. 2013, 52, 59–69. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Selvam, A. Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere 2006, 63, 980–986. [Google Scholar] [CrossRef] [PubMed]
- MAFF. The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service (ADAS); HMSO: London, UK, 1981.
- Pączka, G.; Garczyńska, M.; Mazur-Pączka, A.; Podolak, A.; Szura, R.; Skoczko, I.; Kostecka, J. Vermicomposting of sugar beet pulps using Eisenia fetida (Sav.) earthworms. Annu. Set Environ. Prot. 2018, 20, 588–601. [Google Scholar]
- Sharma, K.; Garg, V.K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 2018, 250, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Singh, J.; Vig, A.P. Effect on Growth of Earthworm and Chemical Parameters During Vermicomposting of Pressmud Sludge Mixed with Cattle Dung Mixture. Procedia Environ. Sci. 2016, 35, 425–434. [Google Scholar] [CrossRef]
- Huang, K.; Fusheng, L.; Yongfen, W.; Xiaoyong, F.; Xuemin, C. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour. Technol. 2014, 170, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, P.; Ghosh, G.K.; Ghosal, P.K.; Banik, P. Changes in Organic-C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour. Technol. 2007, 98, 2485–2494. [Google Scholar] [CrossRef] [PubMed]
- Kaviraj; Sharma, S. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour. Technol. 2003, 90, 169–173. [Google Scholar] [CrossRef]
- Suthar, S. Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia fetida. Environmentalist 2008, 28, 76–84. [Google Scholar] [CrossRef]
- Plaza, C.; Nogales, R.; Senesi, N.; Benitez, E.; Polo, A. Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresour. Technol. 2007, 9, 5085–5089. [Google Scholar] [CrossRef]
- Prakash, M.; Karmegam, N. Vermistabilization of press mud using Perionyx ceylanensis Mich. Bioresour. Technol. 2010, 101, 8464–8468. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, V.K. Recycling of organic wastes by employing Eisenia fetida. Bioresour. Technol. 2011, 102, 2874–2880. [Google Scholar] [CrossRef] [PubMed]
- Hait, S.; Tare, V. Transformation and availability of nutrients and heavy metalsduring integrated composting–vermicomposting of sewage sludge. Ecotoxicol. Environ. Saf. 2012, 79, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Vig, A.P.; Singh, J.; Wani, S.H.; Dhaliwal, S.S. Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Bioresour. Technol. 2011, 102, 7941–7945. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Garg, V.K. Vermicomposting of mixed solid textile mill sludge and cow dung with epigeic earthworm Eisenia fetida. Bioresour. Technol. 2003, 90, 311–316. [Google Scholar] [CrossRef]
- Gupta, R.; Garg, V.K. Stabilization of primary sewage sludge during vermicomposting. J. Hazard. Mater. 2008, 153, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, Z.; Wu, J.; Tian, G. Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Bioresour. Technol. 2010, 101, 3430–3436. [Google Scholar] [CrossRef] [PubMed]
- Heavy Metals and Organic Compounds from Wastes Used as Organic Fertilizers. Annex 2 Compost quality definition—Legislation and standards. Env.a.2./etu/2001/0024. Available online: http://ec.europa.eu/environment/waste/compost/pdf/hm_annex2.pdf (accessed on 2 September 2019).
- Soobhany, N.; Mohee, R.; Garg, V.K. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae. Waste Manag. 2015, 39, 130–145. [Google Scholar] [CrossRef]
- Rożen, A. Effect of cadmium on life-history parameters in Dendrobaena octaedra (Lumbricidae: Oligochaeta) populations originating from forests differently polluted with heavy metals. Soil Biol. Biochem. 2006, 38, 489–503. [Google Scholar] [CrossRef]
- Peijnenburg, W.J.G.M.; De Groot, A.C.; Van Veen, R.P.M. Experimental and theoretical study on equilibrium partitioning of heavy metals. In Trace Elements in Soil: Bioavailability, Flux and Transfer; Iskandar, I.K., Kirkham, M.B., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 91–126. [Google Scholar]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1130. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Hopkin, S.P. Tolerance of zinc in populations of the earthworm Lumbricus rubellus from uncontaminated and metal-contaminated ecosystems. Arch. Environ. Contam. Toxicol. 1999, 37, 332–337. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Svendsen, C.; Rimmer, V.R.; Hopkin, S.P.; Weeks, J.M. Relative sensitivity of the life-cycle and biomarker responses in four earthworm species exposed to zinc. Environ. Toxicol. Chem. 2000, 19, 1800–1808. [Google Scholar] [CrossRef]
- Ma, W.C. Toxicity of copper to lumbricid earthworms in sandy agricultural soils amended with Cu-enriched organic waste materials. Ecol. Bull. 1988, 39, 53–56. [Google Scholar]
- Deka, H.; Deka, S.; Baruah, C.K.; Das Hoque, J.S.; Sarma, H.; Sarma, N.S. Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of Java citronella—An aromatic oil yielding plant. Bioresour. Technol. 2011, 102, 11212–11217. [Google Scholar] [CrossRef] [PubMed]
- Najar, I.A.; Khan, A.B. Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida. Environ. Sci. Pollut. Res. 2013, 20, 6406–6417. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S. Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials. Bioresour. Technol. 2007, 98, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Garg, V.K. Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. J. Hazard. Mater. 2009, 168, 262–268. [Google Scholar] [CrossRef] [PubMed]
Parameter | Units | Characterized Substrates | Typha (T) | Iris (I) | Ceratophyllum (C) |
---|---|---|---|---|---|
N | mg kg−1(d.m.) | Initial biomass | 1324.2 ± 23.1 a | 1344.7 ± 13.7 a | 1739.2 ± 6.4 a |
Final | 1475.6 ± 30.8 a | 3354.2 ± 47.1 b | 5650.7 ± 204.5 b | ||
P | Initial biomass | 1510.0 ± 3.0 a | 1910.0 ± 40.0 a | 4100.0 ± 2.0 a | |
Final | 1360.1 ± 5.6 a | 2620.0 ± 10.0 b | 3930.0 ± 40.0 a | ||
K | Initial biomass | 1722.5 ± 25.0 a | 2158.0 ± 100.5 a | 2473.5 ± 33.0 a | |
Final | 4603.2 ± 7.4 b | 5575.9 ± 168.9 b | 14,495.5 ± 560.0 b | ||
Ca | Initial biomass | 1659.7 ± 12.1 a | 1752.7 ± 14.9 a | 7318.2 ± 77.3 a | |
Final | 21,407.1 ± 1299.6 b | 33,386.7 ± 1760.0 b | 35,689.1 ± 4391.9 b | ||
Mg | Initial biomass | 127.2 ± 11.9 a | 225.0 ± 14.7 a | 784.0 ± 21.3 a | |
Final | 1285.7 ± 35.3 b | 2687.9 ± 73.8 b | 5892.0 ± 389.6 b | ||
C/N ratio | - | Initial biomass | 38.17 ± 0.26 a | 39.47 ± 0.62 a | 36.55 ± 0.61 a |
Final | 35.71 ± 0.85 a | 17.48 ± 0.36 b | 15.53 ± 0.31 b | ||
pH w H20 | - | Initial biomass | 7.75 ± 0.03 a | 7.71 ± 0.02 a | 7.79 ± 0.01 a |
Final | 7.04 ± 0.08 b | 6.32 ± 0.03 b | 6.47 ± 0.03 b | ||
Electical conductivity | mS·cm−1 | Initial biomass | 1.99 ± 0.02 a | 1.94 ± 0.02 a | 2.17 ± 0.03 a |
Final | 2.11 ± 0.06 a | 2.74 ± 0.01 b | 2.81 ± 0.03 b |
Properties | Units | Characterized Substrates | Typha (T) | Iris (I) | Ceratophyllum (C) |
---|---|---|---|---|---|
Cu | mg kg−1(d.m.) | Initial biomass | 1.7 ± 0.0 a | 1.6 ± 0.1 a | 6.4 ± 0.1 a |
Final | 5.2 ± 0.4 b | 28.8 ± 5.6 b | 13.5 ± 0.9 b | ||
Mn | Initial biomass | 734.1 ± 20.8 a | 378.9 ± 20.5 a | 19,012.5 ± 280.2 a | |
Final | 501.1 ± 7.2 b | 349.5 ± 8.6 a | 113,78.9 ± 543.6 b | ||
Zn | Initial biomass | 11.3 ± 0.1 a | 8.4 ± 0.1 a | 32.4 ± 0.9 a | |
Final | 35.5 ± 0.1 b | 143.1 ± 4.9 b | 110.2 ± 12.9 b | ||
Cd | Initial biomass | <0.06 a | <0.06 a | 0.1 ± 0.0 a | |
Final | 0.09 ± 0.0 b | 0.1 ± 0.0 b | 0.15 ± 0.0 b | ||
Pb | Initial biomass | 1.4 ± 0.1 a | 1.4 ± 0.1 a | 2.7 ± 0.2 a | |
Final | 0.9 ± 0.1 b | 0.7 ± 0.1 b | 1.4 ± 0.2 b |
Vermicomposting Time (Days) E. fetida | 140 | 175 | 210 |
---|---|---|---|
Number of earthworms | |||
Adult | 22.5 ± 5.7 a | 9.7 ± 3.4 b | 0 |
−56.9% | |||
Young | 62.4 ± 15.5 a | 24.7 ± 3.3 b | 0 |
−60.4% | |||
Cocoons | 12.7 ± 7.1 a | 5.2 ± 0.7 b | 0 |
−59.1% | |||
Biomass of earthworms | |||
Adult | 0.26 ± 0.01 a | 0.21 ± 0.02 a | 0 |
−19.3% | |||
Young | 0.006 ± 0.0009 a | 0.005 ± 0.0007 a | 0 |
−16.7% | |||
Cocoons | 0.011 ± 0.0006 a | 0.01 ± 0.0009 a | 0 |
9.1% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pączka, G.; Mazur-Pączka, A.; Garczyńska, M.; Podolak, A.; Szura, R.; Butt, K.R.; Kostecka, J. Using Earthworms Eisenia fetida (Sav.) for Utilization of Expansive Littoral Plants Biomass. Appl. Sci. 2019, 9, 3635. https://doi.org/10.3390/app9173635
Pączka G, Mazur-Pączka A, Garczyńska M, Podolak A, Szura R, Butt KR, Kostecka J. Using Earthworms Eisenia fetida (Sav.) for Utilization of Expansive Littoral Plants Biomass. Applied Sciences. 2019; 9(17):3635. https://doi.org/10.3390/app9173635
Chicago/Turabian StylePączka, Grzegorz, Anna Mazur-Pączka, Mariola Garczyńska, Agnieszka Podolak, Renata Szura, Kevin R. Butt, and Joanna Kostecka. 2019. "Using Earthworms Eisenia fetida (Sav.) for Utilization of Expansive Littoral Plants Biomass" Applied Sciences 9, no. 17: 3635. https://doi.org/10.3390/app9173635
APA StylePączka, G., Mazur-Pączka, A., Garczyńska, M., Podolak, A., Szura, R., Butt, K. R., & Kostecka, J. (2019). Using Earthworms Eisenia fetida (Sav.) for Utilization of Expansive Littoral Plants Biomass. Applied Sciences, 9(17), 3635. https://doi.org/10.3390/app9173635