Improvement of the Cardiac Oscillator Based Model for the Simulation of Bundle Branch Blocks
Abstract
:1. Introduction
2. Heart Conduction System and Mathematical Models
2.1. Conduction System of the Heart
2.2. Mathematical Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Kusumoto, F.M. ECG Interpretation: From Pathophysiology to Clinical Application; Springer: New York, NY, USA, 2009. [Google Scholar]
- Silvestri, F.; Acciarito, S.; Cardarilli, G.C.; Khanal, G.M.; Nunzio, G.M.L.D.; Fazzolari, R.; Re, M. FPGA Implementation of a Low-Power QRS Extractor; Lecture Notes in Electrical Engineering; Springer: New York, NY, USA, 2009; pp. 9–15. [Google Scholar]
- Silvestri, F.; Cardarilli, G.C.; Nunzio, L.D.; Fazzolari, R.; Re, M. Comparison of Low-Complexity Algorithms for Real-Time QRS Detection using Standard ECG Database. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 307–314. [Google Scholar] [Green Version]
- Breitenstein, D.S. Cardiovascular Modeling: The Mathematical Exspression of Blood Circulation. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1993. [Google Scholar]
- Denis, N. Modelling the heart: Insights, failures and progress. BioEssays 2002, 24, 1155–1163. [Google Scholar]
- Cloherty, S.L.; Dokos, S.; Lovell, N.H. Electrical Activity in Cardiac Tissue, Modeling of American Cancer Society; John Wiley and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- McSherry, P.E.; Clifford, G.; Tarassenko, L.; Smith, L.A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294. [Google Scholar] [CrossRef] [PubMed]
- McSherry, P.E.; Clifford, G. Open-source software for generating electrocardiogram signals. In Proceedings of the 3rd IASTED International Conference on Biomedical Engineering, Innsbruck, Austria, 16–18 February 2005; pp. 410–414. [Google Scholar]
- Pullan, A.J.; Buist, M.L.; Cheg, L.K. Mathematical Modeling the Electrical Activity of Heart: From Cell to Body Surface and Back Again; World Scientific: Singapore, 2005. [Google Scholar]
- Tusscher, K.H.T.; Panfilov, A.V. Modelling of the ventricular conduction system. Progr. Biophys. Mol. Biol. 2008, 96, 152–170. [Google Scholar] [CrossRef] [PubMed]
- Gidea, M.; Gidea, C.; Byrd, W. Deterministic models for simulating electrocardiographic signals. Commun. Nonlin. Sci. Numer. Simul. 2011, 16, 3871–3880. [Google Scholar] [CrossRef]
- Acharya, U.R. Advances in Cardiac Signal Processing; Springer: Berlin, Germany, 2007; p. 33. [Google Scholar]
- Thanom, W.; Loh, R.N.K. Nonlinear control of heartbeat models. Syst. Cybern. Inform. 2011, 9, 21–27. [Google Scholar]
- Acharya, U.R.; Faust, O.; Sree, V.; Swapna, G.; Martis, R.J.; Kadri, N.A.; Suri, J.S. Linear and nonlinear analysis of normal and CAD affected heart rate signals. Comput. Methods Prog. Biomed. 2014, 6, 55–68. [Google Scholar] [CrossRef]
- Van der Pol, B.; Van der Mark, J. The heartbeat considered as a relaxation oscillator and an electrical model of the heart. Phys. A 1928, 6, 763–775. [Google Scholar]
- FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445–446. [Google Scholar] [CrossRef]
- Sherwood, W.E. FitzHugh–Nagumo Model, Encyclopedia of Computational Neuroscience; Springer: Berlin, Germany, 2014. [Google Scholar]
- Grudzinski, K.; Zebrowski, J.J. Modeling cardiac pacemakers with relaxation oscillators. Phys. A 2004, 336, 153–162. [Google Scholar] [CrossRef]
- Zebrowski, J.J.; Grudzinski, K.; Buchner, T.; Kuklik, P.; Gac, J.; Gielark, G.; Sanders, P.; Baranowski, R. Nonlinear oscillator model reproducing various phenomena in the dynamics of the conduction system of the heart. Chaos 2007, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gois, S.R.S.M.; Savi, M.A. An analysis of heart rhythm dynamics using three-coupled oscillator model. Chaos Solitons Fractals 2009, 41, 2553–2565. [Google Scholar] [CrossRef]
- Ryzhii, E.; Ryzhii, M. Modeling of heartbeat dynamics with a system of coupled nonlinear oscillators. Commun. Comput. Inf. Sci. 2014, 404, 67–75. [Google Scholar]
- Ryzhii, E.; Ryzhii, M. A heterogeneous coupled oscillator model for simulation of ECG signals. Comput. Methods Programs Biomed. 2014, 117, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Ryzhii, E.; Ryzhii, M. Simulink heart model for simulation of the effect of external signals. In Proceedings of the 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Chiang Mai, Thailand, 5–7 October 2016. [Google Scholar]
- Ryzhii, E.; Ryzhii, M. Formation of second degree atrioventricular blocks in the cardiac heterogeneous oscillator model. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015. [Google Scholar]
- Macfarlane, P.W.; van Oosterom, A.; Janse, M.; Kligfield, P.; Camm, J.; Pahlm, O. Electrocardiology: Comprehensive Clinical ECG; Springer: Berlin, Germany, 2012. [Google Scholar]
- Wilholt, T. Explaining Models: Theoretical and Phenomenological Models and Their Role for the First, Explanation of the Hydrogen Spectrum. Found Chem. 2005, 7, 149–169. [Google Scholar] [CrossRef]
- di Beranrdo, D.; Signorini, M.G.; Cerutti, S. A model of two nonlinear coupled oscillators for the study of heartbeat dynamics. Int. J. Bifurc. Chaos 1998, 8, 1975–1985. [Google Scholar] [CrossRef]
- Katholi, C.R.; Urthaler, F.; Macy, J., Jr.; James, T.N. A mathematical model of automaticity in the sinus node and AV junction based on weakly coupled relaxation oscillators. Comput. Biomed. Res. 1977, 10, 529–543. [Google Scholar] [CrossRef]
- Postnov, D.; Kee, H.S.; Hyungtae, K. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation. Phys. Rev. E 1999, 60, 2799–2807. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Maharatna, K. Fractional dynamical model for the generation of ECG like signals from filtered coupled Van der pol oscillators. Comput. Methods Prog. Biomed. 2013, 112, 490–507. [Google Scholar] [CrossRef]
- Suchorsky, M.; Rand, R. Three oscillator model of the heartbeat generator. Commun. Nonlin. Sci. Numer. Simul. 2009, 14, 2434–2449. [Google Scholar] [CrossRef]
- Laske, T.G.; Iaizzo, P.A. Handbook of Cardiac Anatomy, Physiology, and Devices, 9-The Cardiac Conduction System; Springer: Berlin, Germany, 2005; pp. 123–136. [Google Scholar]
- Dupre, A.; Vincent, S.; Iaizzo, P.A. Handbook of Cardiac Anatomy, Physiology, and Devices, 15-Basic ECG Theory, Recordings and Interpretation; Springer: Berlin, Germany, 2005; pp. 191–202. [Google Scholar]
- Acharya, U.R. Advances in Cardiac Signal Processing, 1-The Electrocardiogram; Springer: Berlin, Germany, 2007. [Google Scholar]
- Santos, A.M.D.; Lopes, S.R.; Viana, R.L. Rhythm syncronization land chaotic modulation of coupled van der Pol oscillators in a model for the heartbeat. Phys. A 2004, 338, 335–355. [Google Scholar] [CrossRef]
- Ryzhii, E.; Ryzhii, M.; Savchenko, V. Effect of coupling on the pacemaker synchronization in coupled oscillator ECG model. In Proceedings of the Conference on Biomedical Engineering and Sciences: “Miri, Where Engineering in Medicine and Biology and Humanity Meet”, Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 281–286. [Google Scholar]
- Yaneyama, M.; Kawahara, K. Coupled oscillator systems of cultured cardiac myocytes:fluctuation and scaling properties. Phys. Rev. E 2004, 70, 1–9. [Google Scholar]
- Santos, A.M.D.; Lopes, S.R.; Viana, R.L. Syncronization regimes for two coupled noisy Lienard-type drive oscillators. Chaos Solit. Fract. 2008, 36, 901–910. [Google Scholar] [CrossRef]
- Wirkus, S.; Rand, R. The dynamics of two coupled Van der Pol oscillators with delay coupling. Nonlin. Dyn. 2002, 30, 205–221. [Google Scholar] [CrossRef]
- Boyett, M.R.; Honjo, H.; Kodama, I. The sinoatrial node, aheterogeneous pacemaker structure. Cardiovasc. Res. 2000, 47, 658–687. [Google Scholar] [CrossRef]
- Meijler, F.L.; Janse, M.J. Morphology and electrophysiology ofthe mammalian atrioventricular node. Physiol. Rev. 1988, 68, 608–647. [Google Scholar] [CrossRef] [PubMed]
- Boyden, P.A.; Hirose, M.; Dun, W. Cardiac Purkinje cells. HeartRhythm 2010, 7, 127–135. [Google Scholar] [CrossRef]
- Rocşoreanu, C.; Georgescu, A.; Giurgiteanu, N. An active pulse trasmission line simulating nerve axon. Proc. IRE 1962, 50, 2061–2070. [Google Scholar]
- Available online: https://en.ecgpedia.org (accessed on 27 March 2019).
- Available online: https://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.html (accessed on 21 March 2019).
- Available online: http://courses.kcumb.edu/physio/blocks/index.htm (accessed on 12 March 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Re, M.; Silvestri, F. Improvement of the Cardiac Oscillator Based Model for the Simulation of Bundle Branch Blocks. Appl. Sci. 2019, 9, 3653. https://doi.org/10.3390/app9183653
Cardarilli GC, Di Nunzio L, Fazzolari R, Re M, Silvestri F. Improvement of the Cardiac Oscillator Based Model for the Simulation of Bundle Branch Blocks. Applied Sciences. 2019; 9(18):3653. https://doi.org/10.3390/app9183653
Chicago/Turabian StyleCardarilli, Gian Carlo, Luca Di Nunzio, Rocco Fazzolari, Marco Re, and Francesca Silvestri. 2019. "Improvement of the Cardiac Oscillator Based Model for the Simulation of Bundle Branch Blocks" Applied Sciences 9, no. 18: 3653. https://doi.org/10.3390/app9183653
APA StyleCardarilli, G. C., Di Nunzio, L., Fazzolari, R., Re, M., & Silvestri, F. (2019). Improvement of the Cardiac Oscillator Based Model for the Simulation of Bundle Branch Blocks. Applied Sciences, 9(18), 3653. https://doi.org/10.3390/app9183653