Analysis and Design of a Novel Concept Gasket to Improve the Reliability of the Balanced Armature Receiver Used in Earphones
Abstract
:1. Introduction
2. Analysis Method
2.1. Balanced Armature Receiver Earphone Model
2.2. Balanced Armature Receiver Model
2.3. Failure of the BA Receiver
2.4. Numerical Analysis Method
2.5. Drop Directions
3. Gasket Design Method
3.1. Gasket Structure
3.2. Shock Absorption Structure Design
3.3. Gasket Analysis Results
4. Experiment
4.1. Experimental Setup
4.2. BA Receiver Earphone Sample
4.3. Experimental Results
4.3.1. X-ray Photos
4.3.2. Sound Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BA | Balanced armature |
OG | Original gasket |
NCG | Novel concept gasket |
SPL | Sound pressure level |
THD | Total harmonic distortion |
PCB | Printed circuit board |
PMs | Permanent magnets |
CDP | Center diaphragm |
SDP | Side diaphragm |
UR | Upper region |
UAR | Upper air region |
USR | Upper solid region |
LR | Lower region |
LAR | Lower air region |
LSR | Lower solid region |
SRs | Side regions |
SAR | Side air region |
SSR | Side solid region |
References
- Xu, D.P.; Sun, P.; Kwon, J.H.; Hwang, S.M. An integrated design of microspeaker module with smaller volume. J. Appl. Phys. 2014, 115, 17A339. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Kwon, J.H.; Kim, H.K.; Hwang, S.M. Analysis and optimization of micro speaker-box using a passive radiator in portable device. Arch. Acoust. 2017, 42, 753–760. [Google Scholar] [CrossRef]
- Lu, M.; Xie, Y.; Zhu, W.; Peyton, A.J.; Yin, W. Determination of the magnetic permeability, electrical conductivity, and thickness of ferrite metallic plates using a multi-frequency electromagnetic sensing system. IEEE Trans. Ind. Inform. 2018, 15, 4111–4119. [Google Scholar] [CrossRef]
- Jensen, J.; Agerkvist, F.T.; Harte, J.M. Nonlinear time-domain modeling of balanced-armature receivers. J. Audio Eng. Soc. 2011, 59, 91–101. [Google Scholar]
- Xu, D.-P.; Jiang, Y.-W.; Hwang, S.-M. Analysis of the Magnetization Effect of Permanent Magnets on the Nonlinear Magnetic Characteristic Distributions of a Balanced Armature Receiver. IEEE Trans. Magn. 2018, 55, 1–5. [Google Scholar] [CrossRef]
- Xu, D.-P.; Jiang, Y.-W.; Hwang, S.-M.; Zhang, H.-L. Fast Electromagnetic Analysis of a 3-D Magnetic Circuit in a Balanced Armature Receiver. IEEE Trans. Magn. 2018, 55, 1–4. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Xu, D.P.; Jiang, Z.X.; Kim, J.H.; Hwang, S.M. Comparison of Multi-Physical Coupling Analysis of a Balanced Armature Receiver between the Lumped Parameter Method and the Finite Element/Boundary Element Method. Appl. Sci. 2019, 9, 839. [Google Scholar] [CrossRef]
- Hughes, T.J. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Friswell, M.; Mottershead, J.E. Finite Element Model Updating in Structural Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 38. [Google Scholar]
- Lu, M.; Yin, L.; Peyton, A.J.; Yin, W. A novel compensation algorithm for thickness measurement immune to lift-off variations using eddy current method. IEEE Trans. Instrum. Meas. 2016, 65, 2773–2779. [Google Scholar]
- Galin, L.A.; Moss, H.; Sneddon, I.N. Contact Problems in the Theory of Elasticity; North Carolina State University Raleigh School of Physical Sciences and Applied Mathematics: Raleigh, NC, USA, 1961. [Google Scholar]
- Hughes, T.J.; Taylor, R.L.; Sackman, J.L.; Curnier, A.; Kanoknukulchai, W. A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 1976, 8, 249–276. [Google Scholar] [CrossRef]
- Yin, W.; Tang, J.; Lu, M.; Xu, H.; Huang, R.; Zhao, Q.; Zhang, Z.; Peyton, A. An equivalent-effect phenomenon in eddy current non-destructive testing of thin structures. IEEE Access 2019, 7, 70296–70307. [Google Scholar] [CrossRef]
- Chan, S.K.; Tuba, I.S. A finite element method for contact problems of solid bodies—Part I. Theory and validation. Int. J. Mech. Sci. 1971, 13, 615–625. [Google Scholar] [CrossRef]
- Bathe, K.J.; Ramm, E.; Wilson, E.L. Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Methods Eng. 1975, 9, 353–386. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.F. Static and Dynamic Analysis of Structures: With an Emphasis on Mechanics and Computer Matrix Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 6. [Google Scholar]
- Mises, R.V. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1913, 1913, 582–592. [Google Scholar]
- Huang, C. Air Cushion Grip with a Cubic Supporting Structure and Shock-Absorbing Function. U.S. Patent 5,193,246, 15 March 1993. [Google Scholar]
- Huang, J. Shock-Absorbing Cushion. U.S. Patent 5,669,161, 23 September 1997. [Google Scholar]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics, 4th ed.; Wiley-VCH: Weinheim, Germany, 1999; p. 560. ISBN 0-471-84789-5. [Google Scholar]
- Xu, D.P.; Lu, H.W.; Jiang, Y.W.; Kim, H.K.; Kwon, J.H.; Hwang, S.M. Analysis of sound pressure level of a balanced armature receiver considering coupling effects. IEEE Access 2017, 5, 8930–8939. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Xu, D.P.; Jiang, Z.X.; Kim, J.H.; Hwang, S.M. Analysis and Design of Helmholtz Protector to Improve High-Frequency Response of Insert Earphone. Appl. Sci. 2019, 9, 2541. [Google Scholar] [CrossRef]
- Sun, J.S.; Lee, K.H.; Lee, H.P. Comparison of implicit and explicit finite element methods for dynamic problems. J. Mater. Process. Technol. 2000, 105, 110–118. [Google Scholar] [CrossRef]
Item | Material | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|
Armature | Permalloy | 8300 | 127 | 0.3 |
Bobbin | Vectra E130i | 1610 | 15 | 0.43 |
CDP | Aluminum | 2750 | 71 | 0.29 |
Gasket | Rubber | 1300 | 0.004 | 0.5 |
PMs | N50H | 7500 | 155 | 0.3 |
SDP | Soniphor T10um | 1200 | 0.13 | 0.36 |
Voice coil | Copper | 8960 | 110 | 0.34 |
The others | SUS 304 | 7850 | 192 | 0.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.-X.; Kim, J.-H.; Jiang, Y.-W.; Xu, D.-P.; Hwang, S.-M. Analysis and Design of a Novel Concept Gasket to Improve the Reliability of the Balanced Armature Receiver Used in Earphones. Appl. Sci. 2019, 9, 3661. https://doi.org/10.3390/app9183661
Jiang Z-X, Kim J-H, Jiang Y-W, Xu D-P, Hwang S-M. Analysis and Design of a Novel Concept Gasket to Improve the Reliability of the Balanced Armature Receiver Used in Earphones. Applied Sciences. 2019; 9(18):3661. https://doi.org/10.3390/app9183661
Chicago/Turabian StyleJiang, Zhi-Xiong, Jun-Hyung Kim, Yuan-Wu Jiang, Dan-Ping Xu, and Sang-Moon Hwang. 2019. "Analysis and Design of a Novel Concept Gasket to Improve the Reliability of the Balanced Armature Receiver Used in Earphones" Applied Sciences 9, no. 18: 3661. https://doi.org/10.3390/app9183661
APA StyleJiang, Z. -X., Kim, J. -H., Jiang, Y. -W., Xu, D. -P., & Hwang, S. -M. (2019). Analysis and Design of a Novel Concept Gasket to Improve the Reliability of the Balanced Armature Receiver Used in Earphones. Applied Sciences, 9(18), 3661. https://doi.org/10.3390/app9183661