Visible/near Infrared Reflection Spectrometer and Electronic Nose Data Fusion as an Accuracy Improvement Method for Portable Total Soluble Solid Content Detection of Orange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Orange Samples
2.2. VIS/NIR Spectral Data Acquisition
2.3. E-nose Data Acquisition
2.4. TSS Measurement
2.5. Data Analysis Method
3. Results
3.1. VIS/NIR Spectrometer for TSS Detection of Orange
3.1.1. Sampling Position Comparison
3.1.2. Spectral Data Processing
3.1.3. Feature Wavelength Extraction
3.2. E-nose for TSS Detection of Orange
Feature Extraction
3.3. Orange TSS Detection by Fusion Data of VIS/NIR Spectrometer and E-nose
3.3.1. PLSR Detection
3.3.2. PCA-BPNN Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic Amst. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Ncama, K.; Opara, U.L.; Tesfay, S.Z.; Fawole, O.A.; Magwaza, L.S. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’ orange (Citrus sinensis) and ‘Star Ruby’ grapefruit (Citrus x paradisi Macfad). J. Food Eng. 2017, 193, 86–94. [Google Scholar] [CrossRef]
- Esti, M.; Cinquanta, L.; Sinesio, F.; Moneta, E.; Di Matteo, M. Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chem. 2002, 76, 399–405. [Google Scholar] [CrossRef]
- Janssens, P.; Odeurs, W.; Elsen, A.; Verjans, W.; Deckers, T.; Bylemans, D.; Vandendriessche, H. Relations between taste quality of ‘conference’ pear and mineral contents in fruit, leaf and soil. Acta Hortic. 2015, 1094, 333–340. [Google Scholar] [CrossRef]
- Shao, Y.; Bao, Y.; He, Y. Visible/Near-Infrared Spectra for Linear and Nonlinear Calibrations: A Case to Predict Soluble Solids Contents and pH Value in Peach. Food Bioprocess Technol. 2011, 4, 1376–1383. [Google Scholar] [CrossRef]
- Choi, C.H.; Lee, K.J.; Park, B. Prediction of soluble solid and firmness in apple by visible/near-infrared spectroscopy. J. Biosyst. Eng. 1997, 22, 256–265. [Google Scholar]
- Liu, Y.; Ji, L.; Chen, X.; Ying, Y. Rapid assessment of soluble solids content in navel orange by near infrared diffuse reflectance spectra. Spectrosc. Spectr. Anal. 2007, 27, 2190. [Google Scholar]
- Jie, D.; Xie, L.; Rao, X.; Ying, Y. Improving accuracy of prediction model for soluble solids content of watermelon by variable selection based on near-infrared spectroscopy. Trans. Chin. Soc. Agric. Eng. 2013, 29, 264–270. [Google Scholar]
- Zhang, S.; Zhang, H.; Wang, F.; Zhao, C.; Yang, G. Measurement of soluble solid content in persimmon using visible-near infrared spectroscopy. Trans. Chin. Soc. Agric. Eng. 2009, 25, 345–347. [Google Scholar]
- Jie, D.; Xie, L.; Rao, X.; Ying, Y. Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biol. Technol. 2014, 90, 1–6. [Google Scholar] [CrossRef]
- Shaguyimier, M. Establishment of Near Infrared Spectroscopy for Jun Jujube Sugar of Different Mature Period. Anhui Agric. Sci. Bull. 2017, 23, 143–144. [Google Scholar]
- Na, L.I.; Yang, X.X.; Dai, S.M.; Rong-Hua, L.I.; Jiang, H.; Luo, Y.X.; Gentile, A.; Deng, Z.N. Establishment of Non-Destructive System for Fruit Quality Grading of ‘Bingtang’ Sweet Orange and Its Application on Packing Line. Sci. Agric. Sin. 2016, 49, 132–141. [Google Scholar]
- Cheng, P.F.; Zhang, L.; Hui-Shan, L.U.; Yan, H.W.; Gao, Q.; Wang, F.J. Determination of Valencia Orange Sugar Concentration by Near-infrared Diffuse Reflectance. Hubei Agric. Sci. 2014, 2639–2641. [Google Scholar]
- Ramírez, H.L.; Soriano, A.; Gómez, S.; Iranzo, J.U.; Briones, A.I. Evaluation of the Food Sniffer electronic nose for assessing the shelf life of fresh pork meat compared to physicochemical measurements of meat quality. Eur. Food Res. Technol. 2018, 244, 1047–1055. [Google Scholar] [CrossRef]
- Lubinska-Szczygeł, M.; Pudlak, D.; Dymerski, T.; Namieśnik, J. Rapid assessment of the authenticity of limequat fruit using the electronic nose and gas chromatography coupled with mass spectrometry. Mon. Chem. Chem. Mon. 2018, 149, 1–10. [Google Scholar] [CrossRef]
- Plotto, A.; Ducamp, M.N.; Lebrun, M.; Goodner, K.; Baldwin, E. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol. Technol. 2008, 48, 122–131. [Google Scholar]
- Wei, Z.; Pan, L.; Zhao, X.; Kang, T. A Study on Soluble Solids Content Assessment Using Electronic Nose: Persimmon Fruit Picked on Different Dates. Int. J. Food Prop. 2016, 19, 53–62. [Google Scholar]
- Qiu, S.; Wang, J.; Gao, L. Discrimination and characterization of strawberry juice based on electronic nose and tongue: Comparison of different juice processing approaches by LDA, PLSR, RF, and SVM. J. Agric. Food Chem. 2014, 62, 6426. [Google Scholar] [CrossRef]
- Yang, Z.R.; Zwolinski, M. Mutual information theory for adaptive mixture models. IEEE Trans. PAMI 2001, 23, 396–403. [Google Scholar] [CrossRef]
- Nanni, M.R.; Cezar, E.; Junior, C.A.D.S.; Silva, G.F.C.; Gualberto, A.A.D.S. Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies. Arch. Agron. Soil Sci. 2017, 64, 682–695. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, M.; Wang, J.; Sheng, Y.E. Evaluation of peach quality indices using an electronic nose by MLR, QPST and BP network. Sens. Actuators B Chem. 2008, 134, 332–338. [Google Scholar] [CrossRef]
- Cheng, H.; Qin, Z.H.; Guo, X.F.; Hu, X.S.; Wu, J.H. Geographical origin identification of propolis using GC–MS and electronic nose combined with principal component analysis. Food Res. Int. 2013, 51, 813–822. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Zhang, H.; Li, Z.; Hai, Q.; Chen, L. Optimization of soil salt inversion model based on spectral transformation from hyperspectral index. Trans. Chin. Soc. Agric. Eng. 2018, 34, 184–194. [Google Scholar]
- Xia, J. Effect of Different Pretreatment Method of Nondestructive Measure Vitamin C Content of Umbilical Orange with Near-infrared Spectroscopy. Trans. Chin. Soc. Agric. Mach. 2007, 38, 107–111. [Google Scholar]
- Wei, Z.; Wang, J.; Zhang, W. Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods. Food Chem. 2015, 177, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, J. Discrimination of LongJing green-tea grade by electronic nose. Sens. Actuators B Chem. 2007, 122, 134–140. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, W. Detection of Biluochun Green Tea Quality Grade by Using an Electronic Nose. J. Agric. Mech. Res. 2012, 34, 133–137. [Google Scholar]
- Lu, C.; Wang, S.; Wang, X. A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance. Aerosp. Sci. Technol. 2017, 71, 392–401. [Google Scholar] [CrossRef]
- Jie, D.F.; Yang, J.; Peng, Y.X.; Lian, Y.X.; Zhang, D.; University, H.A. Research on the detection model of sugar content in different position of citrus based on the hyperspectral technology. Food Mach. 2017, 33, 51–54. [Google Scholar]
- Huang, X.; Qian, M.; Xu, F. Nondestructive detection of dried apricots quality based on machine vision and near-infrared diffuse reflectance spectroscopy technology. Trans. Chin. Soc. Agric. Eng. 2012, 28, 260–265. [Google Scholar]
- Zhang, J.; Zhang, S.; Li, Z.; Wang, Q.; Wu, D. Recognition of Beef Adulterated with Pork Using Electronic Nose Combined with Statistical Analysis. Food Sci. 2018, 39, 296–300. [Google Scholar]
- Min, L.I.; Gao, Z.; Zhu, Y.; Zengjian, S.U.; Chen, L.; Zheng, S.; Zhang, Z.; Meijiao, H.U. Non-destructive Test on Predicting Sugar Content and Acidity of Mango by Electronic Nose Technology. Chin. J. Trop. Crop. 2016, 37, 1553–1557. [Google Scholar]
Number in Array | Sensor Name | Object Substances for Sensing | Threshold Value (mL·m−3) |
---|---|---|---|
R1 | W1C | Aromatics | 10 |
R2 | W5S | Nitrogen oxides | 1 |
R3 | W3C | Ammonia and aromatic molecules | 10 |
R4 | W6S | Hydrogen | 100 |
R5 | W5C | Methane, propane and aliphatic non-polar molecules | 1 |
R6 | W1S | Broad methane | 100 |
R7 | W1W | Sulfur-containing organics | 1 |
R8 | W2S | Broad alcohols | 100 |
R9 | W2W | Aromatics, sulfur-and chlorine-containing organics | 1 |
R10 | W3S | Methane and aliphatics | 10 |
Data Processing Method | DP 1 | DP 2 | DP 3 | DP 4 | DP 5 | DP 6 | DP 7 | DP 8 |
R2cal | 0.9852 | 0.7372 | 0.9101 | 0.9996 | 0.6486 | 0.9250 | 0.9386 | 0.9110 |
R2val | 0.0932 | 0.1047 | 0.4001 | 0.0687 | 0.1336 | 0.3236 | 0.0063 | 0.0077 |
Data Processing Method | DP 9 | DP 10 | DP 11 | DP 12 | DP 13 | DP 14 | DP 15 | DP 16 |
R2cal | 0.9919 | 0.9386 | 0.8992 | 0.9982 | 0.9807 | 0.7285 | 0.8981 | 0.8952 |
R2val | 0.2593 | 0.0063 | 0.0078 | 0.1649 | 0.0120 | 0.0019 | 0.6600 | 0.5631 |
MI Range | ≥0.70 | ≥0.71 | ≥0.72 | ≥0.73 | ≥0.74 | ≥0.75 | ≥0.76 | ≥0.77 |
---|---|---|---|---|---|---|---|---|
Remaining Feature Number | 2140 | 1994 | 1635 | 1251 | 736 | 278 | 96 | 15 |
R2cal | 0.8983 | 0.8974 | 0.8984 | 0.8675 | 0.8627 | 0.8319 | 0.7866 | 0.3325 |
R2val | 0.6602 | 0.6607 | 0.6620 | 0.6655 | 0.6807 | 0.6769 | 0.4531 | 0.1516 |
Feature | F1 | F2 | F3 | F4 | F5 | Combined Feature |
---|---|---|---|---|---|---|
R2cal | 0.1298 | 0.1438 | 0.1326 | 0.1442 | 0.1868 | 0.5345 |
R2val | 0.3333 | 0.2873 | 0.3297 | 0.2868 | 0.4331 | 0.4282 |
MI Range | ≥0.61 | ≥0.62/0.63 | ≥0.64/0.65 | ≥0.66/0.67 | ≥0.68/0.69 |
---|---|---|---|---|---|
Remaining Feature Number | 48 | 45 | 42 | 40 | 39 |
R2cal | 0.5319 | 0.5280 | 0.5212 | 0.5197 | 0.5103 |
R2val | 0.3516 | 0.3426 | 0.3341 | 0.2255 | 0.1815 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Lu, H.; Ference, C.; Zhang, Q. Visible/near Infrared Reflection Spectrometer and Electronic Nose Data Fusion as an Accuracy Improvement Method for Portable Total Soluble Solid Content Detection of Orange. Appl. Sci. 2019, 9, 3761. https://doi.org/10.3390/app9183761
Xu S, Lu H, Ference C, Zhang Q. Visible/near Infrared Reflection Spectrometer and Electronic Nose Data Fusion as an Accuracy Improvement Method for Portable Total Soluble Solid Content Detection of Orange. Applied Sciences. 2019; 9(18):3761. https://doi.org/10.3390/app9183761
Chicago/Turabian StyleXu, Sai, Huazhong Lu, Christopher Ference, and Qianqian Zhang. 2019. "Visible/near Infrared Reflection Spectrometer and Electronic Nose Data Fusion as an Accuracy Improvement Method for Portable Total Soluble Solid Content Detection of Orange" Applied Sciences 9, no. 18: 3761. https://doi.org/10.3390/app9183761
APA StyleXu, S., Lu, H., Ference, C., & Zhang, Q. (2019). Visible/near Infrared Reflection Spectrometer and Electronic Nose Data Fusion as an Accuracy Improvement Method for Portable Total Soluble Solid Content Detection of Orange. Applied Sciences, 9(18), 3761. https://doi.org/10.3390/app9183761