Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Material Tests
2.2. Sample Preparation
2.3. Test Procedure
2.3.1. Flexural Strength (Static Bending)
- N: Rate of motion of moving head, in./min (mm/min),
- z: Unit rate of fiber strain, in./in. (mm/mm) of outer fiber length per minute (= 0.005),
- L: Span, in. (mm), and
- d: Depth (thickness) of specimen, in. (mm).
- : Modulus of rupture, MPa.
- : Maximum load, N.
- : Width of specimen, mm.
- : Modulus of elasticity, MPa.
- Slope of the straight line portion of the load deflection curve, N/mm (slope between 10% of Pmax and 40% of Pmax as suggested in note 16 of ASTM D1037).
2.3.2. Internal Bond Strength (Tension Perpendicular to Surface)
2.3.3. Compression Strength
- : Compressive strength, MPa.
2.3.4. Thermal Conductivity
- : Thermal conductivity, W/m K.
- : Heat flux flowing through the sample, W/m2.
- : Thickness of sample, m.
- : The difference in temperature between the hot and cold surfaces of specimen, K
3. Results and Discussion
3.1. Effects of Waste Type
3.1.1. Flexural Strength (Static Bending)
3.1.2. Internal Bond Strength
3.1.3. Compressive Strength
3.1.4. Thermal Conductivity
3.2. Effects of Particleboard Density
3.2.1. Flexural Strength (Static Bending)
3.2.2. Internal Bond Strength
3.2.3. Compression Strength
3.2.4. Thermal Conductivity
3.3. Effects of Resin Type
3.3.1. Flexural (Static Bending)
3.3.2. Internal Bond Strength
3.3.3. Compression Strength
3.3.4. Thermal Conductivity
3.4. Effects of Resin Content
3.4.1. Flexural (Static Bending)
3.4.2. Internal Bond Strength
3.4.3. Compressive Strength
3.4.4. Thermal Conductivity
3.5. Effects of Treated Straw
3.5.1. Flexural (Static Bending)
3.5.2. Internal Bond Strength
3.5.3. Compression Strength
3.5.4. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zach, J.; Hroudová, J.; Korjenic, A. Environmentally efficient thermal and acoustic insulation based on natural and waste fibers. J. Chem. Technol. Biotechnol. 2016, 91, 2156–2161. [Google Scholar] [CrossRef]
- Hroudová, J.; Korjenic, A.; Zach, J.; Mitterböck, M. Entwicklung eines Wärmedämmputzes mit Naturfasern und Untersuchung des Wärme-und Feuchteverhaltens. Bauphysik 2017, 39, 261–271. [Google Scholar] [CrossRef]
- Zach, J.; Korjenic, A.; Petránek, V.; Hroudová, J.; Bednar, T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- Abdel-Mohdy, F.A.; Abdel-Halim, E.S.; Abu-Ayana, Y.M.; El-Sawy, S.M. Rice straw as a new resource for some beneficial uses. Carbohydr. Polym. 2009, 75, 44–51. [Google Scholar] [CrossRef]
- Central Agency for Public Mobilization and Statistics (CAPMAS), Agricultural Sector. Annual Bulletin for Statistics of the Waste and Recycling Rice Straw; Central Agency for Public Mobilization and Statistics (CAPMAS), Agricultural Sector: Cairo, Egypt, 2013.
- Jones, D.; Brischke, C. (Eds.) Performance of Bio-Based Building Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Rowell, R.M.; Han, J.S.; Rowell, J.S. Natural Polymers and Agrofibers Composites Characterization and Factors Effecting Fiber Properties. Nat. Polym. Agrofibers Compos. 2000, 115–134. Available online: https://pdfs.semanticscholar.org/b1c2/bc3af9a233098586c031f76af027cfb4db51.pdf (accessed on 14 September 2019).
- Jin, T.; Yunhai, M.; Luquan, R. Naturally biological materials and their tribology: A review. Tribology 2001, 21, 315–320. [Google Scholar] [CrossRef]
- Guntekin, E.; Karakus, B. Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Ind. Crop. Prod. 2008, 27, 354–358. [Google Scholar] [CrossRef]
- Junjun, L.; Chanjuan, J.; Chunxia, H. Flexural Properties of Rice Straw and Starch Composites. AASRI 2012, 3, 89–94. [Google Scholar]
- Ashori, A.; Nourbakhsh, A. Effect of press cycle time and resin content on physical and mechanical properties of particleboard panels made from the underutilized low-quality raw materials. Ind. Crop. Prod. 2008, 28, 225–230. [Google Scholar] [CrossRef]
- Pan, Z.; Zheng, Y.; Zhang, R.; Jenkins, B.M. Physical properties of thin particleboard made from saline eucalyptus. Ind. Crop. Prod. 2007, 26, 185–194. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, Z.; Zhang, R.; Jenkins, B.M.; Blunk, S. Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresour. Technol. 2007, 98, 1304–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junjun, L.; Chuanhui, H. Biodegradable Composites from Rice Straw and Cornstarch Adhesives. Adv. J. Food Sci. Technol. 2013, 5, 41–45. [Google Scholar]
- Li, X.; Cai, Z.; Winandy, J.E.; Basta, A.H. Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards. Ind. Crops Prod. 2011, 33, 665–669. [Google Scholar] [CrossRef]
- Jumhuri, N.; Hashim, R.; Sulaiman, O.; Nadhari, W.N.A.W.; Salleh, K.M.; Khalid, I.; Saharudin, N.I.; Razali, M.Z. Effect of treated particles on the properties of particleboard made from oil palm trunk. Mater. Des. 2014, 64, 769–774. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Wan, J.; Ma, F.; Tang, Y.; Zhang, X. Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive. Bioresour. Technol. 2011, 102, 11258–11261. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, Z.; Winandy, J.E.; Basta, A.H. Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresour. Technol. 2010, 101, 4662–4666. [Google Scholar] [CrossRef] [PubMed]
- Ferrandez-Garcia, C.C.; Garcia-Ortuño, T.; Ferrandez-Garcia, M.T.; Ferrandez-Villena, M.; Ferrandez-Garcia, C.E. Fire-resistance, physical, and mechanical characterization of binderless rice straw particleboards. BioResources 2017, 12, 8539–8549. [Google Scholar]
- American Society of Testing and Materials. Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials; D1037-06 Section 9, 11, 12; American Society of Testing and Materials: West Conshohocken, PA, USA, 2006. [Google Scholar]
- American Society for Testing and Materials. ASTM C 518-85 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission by Means of the Heat Flow Meter Apparatus; American Society for Testing and Materials: West Conshohocken, PA, USA, 1989. [Google Scholar]
- Ashour, T.; Korjenic, A.; Korjenic, S.; Wu, W. Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy Build. 2015, 104, 139–146. [Google Scholar] [CrossRef]
- Ashour, A.T.; Wieland, H.; Georg, H.; Bockisch, F.J.; Wu, W. The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Mater. Des. 2010, 31, 4676–4685. [Google Scholar] [CrossRef]
- Tabarsa, T.; Jahanshahi, S.; Ashori, A. Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol–formaldehyde adhesive. Compos. Part B Eng. 2011, 42, 176–180. [Google Scholar] [CrossRef]
- Zou, Y.; Huda, S.; Yang, Y. Lightweight composites from long wheat straw and polypropylene web. Bioresour. Technol. 2010, 101, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Khristova, P.; Yossifov, N.; Gabir, S. Particle board from sunflower stalks: Preliminary trials. Bioresour. Technol. 1996, 58, 319–321. [Google Scholar] [CrossRef]
- Wang, D.; Sun, X.S. Low density particleboard from wheat straw and corn pith. Ind. Crop. Prod. 2002, 15, 43–50. [Google Scholar] [CrossRef]
- Lertsutthiwong, P.; Khunthon, S.; Siralertmukul, K.; Noomun, K.; Chandrkrachang, S. New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel. Bioresour. Technol. 2008, 99, 4841–4845. [Google Scholar] [CrossRef] [PubMed]
- Panyakaew, S.; Fotios, S. New thermal insulation boards made from coconut husk and bagasse. Energy Build. 2011, 43, 1732–1739. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.D.; Wang, F.H.; Liu, Y. Properties of Wheat-Straw Boards with Frw Based on Interface Treatment. Phys. Procedia 2012, 32, 430–443. [Google Scholar] [CrossRef] [Green Version]
Samples | Type of Waste | Ratio of Resin (%) | Density of Particleboard (g/cm3) | Treatment of Straw | Type of Resin |
---|---|---|---|---|---|
U10 | Rice straw | 10 | 0.7 | Untreated | UF |
U12 | Rice straw | 12 | 0.7 | Untreated | UF |
U14 | Rice straw | 14 | 0.7 | Untreated | UF |
D0.3 | Rice straw | 12 | 0.3 | Untreated | UF |
D0.5 | Rice straw | 12 | 0.5 | Untreated | UF |
N | Rice straw | 12 | 0.5 | NaOH | UF |
W | Rice straw | 12 | 0.5 | Hot water | UF |
S | Rice straw | 10 | 0.5 | Untreated | CS |
Z | Rice straw | - | 0.5 | Untreated | without resin |
F | Flax shaves | 12 | 0.5 | Untreated | UF |
Samples | Modulus of Elasticity (MOE) (MPa) | Modulus of Rupture (MOR) (MPa) |
---|---|---|
U10 | 345 | 2.10 |
U12 | 244 | 1.95 |
U14 | 214 | 1.30 |
D0.3 | 92 | 0.60 |
D0.5 | 182 | 1.0 |
N | 221 | 2.10 |
W | 164 | 2.80 |
S | 6 | 0.30 |
Z | 23 | 0.46 |
F | 1722 | 13.85 |
Internal Bond (MPa) | Samples | |||||||||
U10 | U12 | U14 | D0.3 | D0.5 | N | W | S | Z | F | |
0.002 | 0.008 | 0.016 | 0.003 | 0.020 | 0.005 | 0.045 | 0.002 | 0.003 | 0.60 |
Compression Strength (MPa) | Samples | |||||||||
U10 | U12 | U14 | D0.3 | D0.5 | N | W | S | Z | F | |
1.548 | 2.509 | 4.463 | 0.688 | 1.744 | 1.848 | 3.439 | 0.579 | 0.270 | 12.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, Z.; Ashour, T.; Khalil, M.; Bahnasawy, A.; Ali, S.; Hollands, J.; Korjenic, A. Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties. Appl. Sci. 2019, 9, 3878. https://doi.org/10.3390/app9183878
Hussein Z, Ashour T, Khalil M, Bahnasawy A, Ali S, Hollands J, Korjenic A. Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties. Applied Sciences. 2019; 9(18):3878. https://doi.org/10.3390/app9183878
Chicago/Turabian StyleHussein, Zakia, Taha Ashour, Mervat Khalil, Adel Bahnasawy, Samir Ali, Jutta Hollands, and Azra Korjenic. 2019. "Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties" Applied Sciences 9, no. 18: 3878. https://doi.org/10.3390/app9183878
APA StyleHussein, Z., Ashour, T., Khalil, M., Bahnasawy, A., Ali, S., Hollands, J., & Korjenic, A. (2019). Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties. Applied Sciences, 9(18), 3878. https://doi.org/10.3390/app9183878