Exploring an Integrated Manure-Seawater System for Sustainable Cyanobacterial Biomass Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluating a Cyanobacterial Strain (HSaC) at Different Salt Concentrations in BG11 Medium
2.2. Measurement of Biomass, Exo-Polysaccharides (EPSs) and Photosynthetic Pigments
2.3. Development of Growth Media from Animal Manure and Seawater
2.4. Nutrient Composition of Seawater and Manure
2.5. Statistical Analysis
3. Results
3.1. Effect of NaCl Concentration on Growth of Cyanobacterial Strain HSaC
3.2. Growth Response of Cyanobacteria to Manure and Seawater Media
4. Discussion
4.1. Effect of NaCl Salt Concentration on Growth of Cyanobacterial Strain HSaC
4.2. Growth Response of Cyanobacterial Strains HSaC and LC to Manure and Seawater Media
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Castrd, G.F.P.S.; Rizzd, R.F.; Passds, T.S.; Santds, B.N.C.; Dias, D.D. Biomass production by Arthrospira platensis under deferent culture conditions. Food Sci. Tech. 2015, 35, 18–24. [Google Scholar] [CrossRef]
- Hu, Q. Industrial Production of Microalgal Cell-Mass and Secondary Products—Major Industrial Species: Arthrospira (Spirulina) Platensis. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell Publishing: Oxford, UK, 2004; pp. 264–272. [Google Scholar]
- Pathak, J.; Rajneesh; Maurya, P.K.; Singh, S.P.; Häder, D.P.; Sinha, R.P. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Front. Environ. Sci. 2018, 6, 7. [Google Scholar] [CrossRef]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, M.; Vecchi, V.; Barera, S.; Dall’Osto, L. Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microb. Cell Factories 2018, 17, 173. [Google Scholar] [CrossRef] [PubMed]
- Piorreck, M.; Baasch, K.H.; Pohl, P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 1984, 23, 207–216. [Google Scholar] [CrossRef]
- Mahadevaswamy, M.; Venkataraman, L. Bioconversion of poultry droppings for biogas and algal production. Agric. Wastes 1986, 18, 93–101. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Bhatnagar, A.; Claxton, R.; Das, K. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour. Technol. 2010, 101, 6751–6760. [Google Scholar] [CrossRef] [PubMed]
- Kebede-Westhead, E.; Pizarro, C.; Mulbry, W.W. Treatment of swine manure effluent using freshwater algae: Production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. Environ. Biol. Fishes 2006, 18, 41–46. [Google Scholar] [CrossRef]
- Wilkie, M.P. Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. J. Exp. Zool. 2002, 293, 284–301. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Reynolds, D.L.; Das, K.C. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour. Technol. 2011, 102, 10841–10848. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Hur, S.B. Development of Economical Fertilizer-Based Media for Mass Culturing of Nannochloropsis oceanic. Fish. Aquat. Sci. 2011, 14, 317–322. [Google Scholar]
- Jimenez-Perez, M.V.; Sanchez-Castillo, P.; Romera, O.; FernandezMoreno, D.; Perez-Martinez, C. Growth and nutrient removal in free and immobilized plantonic green algae isolated from pig manure. Enzyme Microb. Technol. 2004, 34, 392–398. [Google Scholar] [CrossRef]
- Costa, R.H.; Medri, W.; Perdomo, C.C. High-rate pond for treatment of piggery wastes. Water Sci. Technol. 2000, 42, 357–362. [Google Scholar] [CrossRef]
- Olguin, E.J.; Galicia, S.; Angulo-Guerrero, O.; Hernandez, E. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour. Technol. 2001, 77, 19–24. [Google Scholar] [CrossRef]
- Olguín, E.J. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnol. Adv. 2003, 22, 81–91. [Google Scholar] [CrossRef]
- Ayala, B. Animal wastes media for Spirulina production. Arch. Hydrobiol. 1984, 67, 349–355. [Google Scholar] [CrossRef]
- Ak, I.; Cetin, Z.; Cirik, S. Gracilaria verrucosa (Hudson) Papenfuss culture using an agricultural organic fertilizers. Fresen. Environ. Bull. 2011, 20, 2156–2162. [Google Scholar]
- Raoof, B.; Kaushik, B.; Prasanna, R. Formulation of a low-cost medium for mass production of Spirulina. Biomass Bioenergy 2006, 30, 537–542. [Google Scholar] [CrossRef]
- Werlinger, C.; Mansilla, A.; Villarroel, A. Effects of Photon Flux Density and Agricultural Fertilizers on the Development of Sarcothalia Crispata Tetraspores (Rhodophyta, Gigartinales) from the Strait of Magellan, Chile. In Nineteenth International Seaweed Symposium Developments in Applied Phycology; Borowitzka, A.M., Critchley, A.T., Kraan, S., Peters, A., Sjøtun, K., Notoya, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 2. [Google Scholar]
- Zarrouk, C. Contribution a Letude d’une Cyanophycee. Influence de Divers Factours Physiques. Et Chimiques sur la Croissance et la Phytosynthese do Spirulina Maxima. Ph.D. Thesis, University of Paris, Paris, France, 1966. [Google Scholar]
- Kobayashi, N.; Noel, E.A.; Barnes, A.; Watson, A.; Rosenberg, J.N.; Erickson, G.; Oyler, G.A. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 2013, 150, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Mulbry, W.; Westhead, E.K.; Pizarro, C.; Sikora, L. Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour. Technol. 2005, 96, 451–458. [Google Scholar] [CrossRef]
- Hu, B.; Min, M.; Zhou, W.; Du, Z.; Mohr, M.; Chen, P.; Zhu, J.; Cheng, Y.; Liu, Y.; Ruan, R. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour. Technol. 2012, 126, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gabbay, R.; Tel-Or, E. Cyanobacterial biomass production in saline media. Plant Soil 1985, 89, 107–116. [Google Scholar] [CrossRef]
- Chang, S.; Lee, Y. Comparison of two chemical extraction methods for proteins and polysaccharides of Spirogyra fluviatilis in extracellular polymeric substances. IOP Conf. Ser. Earth Environ. Sci. 2017, 64, 012122. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Zavřel, T.; Sinetova, M.A.; Červený, J. Measurement of Chlorophyll a and Carotenoids Concentration in Cyanobacteria. Bio-Protocol 2015, 5, e1467. [Google Scholar] [CrossRef]
- Ritchie, J.R. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Wellburn, R.A. The spectral determination of chlorophylls a and b, as well as total, carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, B. Sources of fluorescent dissolved organic matter in high salinity seawater (Bohai Bay, China). Environ. Sci. Pollut. Res. 2012, 20, 1762–1771. [Google Scholar] [CrossRef]
- Wang, H.W.; Cai, D.B.; Yin, R.; Dong, Y.J.; Liu, X.; Gao, H.Q.; Zhao, W.; Zhu, N. The Evaluation of Heavy Metals in Seawater of the Oil Spill Area in Bohai Bay (China) during the Summer. Adv. Mater. Res. 2014, 1073, 500–503. [Google Scholar] [CrossRef]
- Li, S.; Liu, R.; Shan, H. Nutrient Contents in Main Animal Manures in China. J. Agro. Environ. Sci. 2009, 28, 179–184. [Google Scholar]
- Zou, X.; Xu, K.; Ding, L.; Ren, H. Effect of salinity on extracellular polymeric substances (EPS) and soluble microbial products (SMP) in anaerobic sludge systems. Fresen. Environ. Bull. 2009, 18, 1456–1461. [Google Scholar]
- Zhang, L.H.; Tian, R.; Guo, J.B.; Jia, Y.P.; Zhang, H.F.; Li, Z.; Chen, Z.C. Effect of NaCl Salinity on Extracellular Polymeric Substances and Bioflocculation of Anoxic Sludge in A2/O Process. Huan Jing Ke Xue 2018, 39, 4281–4288. [Google Scholar] [CrossRef]
- Arora, M.; Kaushik, A.; Rani, N.; Kaushik, C.P. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J. Environ. Biol. 2010, 31, 701–704. [Google Scholar] [PubMed]
- Pandey, J.P.; Neeraj, P.; Amit, T. Standardization of pH and Light Intensity for the Biomass Production of Spirulina platensis. J. Gen. Microbiol. 2010, 1, 93–102. [Google Scholar]
- Zhang, Y.J.; Hu, H.W.; Gou, M.; Wang, J.T.; Chen, D.; He, J.Z. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 2017, 231, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Chinnasamy, S.; Singh, M.; Das, K. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 2011, 88, 3425–3431. [Google Scholar] [CrossRef]
Nutrient Constituent | Cow Manure | Pig Manure | Chicken Manure |
---|---|---|---|
N (%) | 1.56 | 2.28 | 2.08 |
P2O5 (%) | 1.49 | 3.97 | 3.53 |
K2O (%) | 1.96 | 2.09 | 2.38 |
Zn (mg kg−1) | 138.6 | 663.3 | 306.6 |
Cu (mg kg−1) | 48.5 | 488.1 | 78.2 |
Element | Cow (Dairy) Manure (mg L−1) | Pig (Swine) Manure (mg L−1) | Chicken (Poultry) Manure (mg L−1) |
---|---|---|---|
Ca | 860 | 170 | 173 |
Mg | 260 | 100 | 21.5 |
Si | 115 | - | 25.7 |
Fe | 20.6 | 16.5 | 22.4 |
Al | 20.6 | 7.3 | 6.92 |
Mn | 9.2 | 2.7 | 4.57 |
B | 1.6 | - | 2.87 |
Cd | 0.08 | 0.009 | 0.989 |
Pb | 0.05 | 0.036 | 2.76 |
Ni | 0.09 | - | 1.33 |
Mo | 0.06 | 0.11 | 1.76 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sido, M.Y. Exploring an Integrated Manure-Seawater System for Sustainable Cyanobacterial Biomass Production. Appl. Sci. 2019, 9, 3888. https://doi.org/10.3390/app9183888
Sido MY. Exploring an Integrated Manure-Seawater System for Sustainable Cyanobacterial Biomass Production. Applied Sciences. 2019; 9(18):3888. https://doi.org/10.3390/app9183888
Chicago/Turabian StyleSido, Mekiso Yohannes. 2019. "Exploring an Integrated Manure-Seawater System for Sustainable Cyanobacterial Biomass Production" Applied Sciences 9, no. 18: 3888. https://doi.org/10.3390/app9183888
APA StyleSido, M. Y. (2019). Exploring an Integrated Manure-Seawater System for Sustainable Cyanobacterial Biomass Production. Applied Sciences, 9(18), 3888. https://doi.org/10.3390/app9183888