Effect of Sensory Loss on Improvements of Upper-Limb Paralysis Through Robot-Assisted Training: A Preliminary Case Series Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Babaiasl, M.; Mahdioun, S.H.; Jaryani, P.; Yazdani, M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 2016, 11, 263–280. [Google Scholar] [CrossRef]
- Krebs, H.I.; Hogan, N.; Volpe, B.T.; Aisen, M.L.; Edelstein, L.; Diels, C. Overview of clinical trials with MIT-MANUS: A robot-assisted neuro-rehabilitation facility. Technol. Health Care 1999, 7, 419–423. [Google Scholar] [PubMed]
- Krebs, H.I.; Volpe, B.T.; Aisen, M.L.; Hogan, N. Increasing productivity and quality of care: Robot-assisted neuro-rehabilitation. J. Rehabil. Res. Dev. 2000, 37, 639–652. [Google Scholar] [PubMed]
- Basteris, A.; Nijenhuis, S.M.; Stienen, A.H.; Buurke, J.H.; Prange, G.B.; Amirabdollahian, A. Training modalities in robot-mediated upper limb rehabilitation in stroke: A framework for classification based on a systematic review. J. Neuroeng. Rehabil. 2014, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, H.; Tomita, Y.; Orand, A.; Tanino, G.; Takeda, K.; Okamoto, S.; Sonoda, S. Robot-assisted training for upper limbs of sub-acute stroke patients. Jpn. J. Compr. Rehabil. Sci. 2015, 6, 27–32. [Google Scholar]
- van Dijk, H.; Jannink, M.J.; Hermens, H.J. Effect of augmented feedback on motor function of the affected upper extremity in rehabilitation patients: A systematic review of randomized controlled trials. J. Rehabil. Med. 2005, 37, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, P.M.; Wulf, G. Extrinsic feedback for motor learning after stroke: What is the evidence? Disabil. Rehabil. 2006, 28, 831–840. [Google Scholar] [CrossRef]
- Boyd, L.A.; Vidoni, E.D.; Wessel, B.D. Motor learning after stroke: Is skill acquisition a prerequisite for contralesional neuroplastic change? Neurosci. Lett. 2010, 482, 21–25. [Google Scholar] [CrossRef]
- Kitago, T.; Krakauer, J.W. Motor learning principles for neurorehabilitation. Handb. Clin. Neurol. 2013, 110, 93–103. [Google Scholar]
- Marko, M.K.; Haith, A.M.; Harran, M.D.; Shadmehr, R. Sensitivity to prediction error in reach adaptation. J. Neurophysiol. 2012, 108, 1752–1763. [Google Scholar] [CrossRef] [Green Version]
- Palidis, D.J.; Cashaback, J.G.A.; Gribble, P.L. Neural signatures of reward and sensory error feedback processing in motor learning. J. Neurophysiol. 2019, 121, 1561–1574. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.D.; Sedgwick, E.M. The perceptions of force and of movement in a man without large myelinated sensory afferents below the neck. J. Physiol. 1992, 449, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Vidoni, E.D.; Boyd, L.A. Preserved motor learning after stroke is related to the degree of proprioceptive deficit. Behav. Brain Funct. 2009, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Karttunan, A.H.; Thijs, V.; Feys, H.; Verheyden, G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Phys. Ther. 2014, 94, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, A.; Tinson, D.J.; Bradley, E.L.; Fletcher, D.; Langton-Hewer, R.; Wade, D.T. Enhanced physical therapy improves recovery of arm function after stroke. A randomized controlled trial. J. Neurol. Neurosurg. Psychiatry 1992, 55, 530–535. [Google Scholar] [CrossRef]
- Staubli, P.; Nef, T.; Klamroth-Marganska, V.; Riener, R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: Four single-cases. J. Neuroeng. Rehabil. 2009, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Finley, M.A.; Fasoli, S.E.; Dipietro, L.; Ohlhoff, J.; Macclellan, L.; Meister, C.; Whitall, J.; Macko, R.; Bever, C.T., Jr.; Krebs, H.I.; et al. Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. J. Rehabil. Res. Dev. 2005, 42, 683–692. [Google Scholar] [CrossRef]
- Sale, P.; Franceschini, M.; Mazzoleni, S.; Palma, E.; Agosti, M.; Posteraro, F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J. Neuroeng. Rehabil. 2014, 11, 104. [Google Scholar] [CrossRef]
- Chino, N.; Sonoda, S.; Domen, K.; Saitoh, E.; Kimura, A. Stroke impairment assessment set (SIAS): A new evaluation instrument for stroke patients. Jpn. J. Rehabil. Med. 1994, 31, 119–125. [Google Scholar] [CrossRef]
- Chino, N.; Sonoda, S.; Domen, K.; Saitoh, E.; Kimura, A. Stroke impairment assessment set (SIAS). In Functional Evaluation of Stroke Patients; Chino, N., Melvin, J.L., Eds.; Springer: Tokyo, Japan, 1996; pp. 19–31. [Google Scholar]
- Pang, M.Y.; Harris, J.E.; Eng, J.J. A community-based upper-extremity group exercise program improves motor function and performance of functional activities in chronic stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2006, 87, 1–9. [Google Scholar] [CrossRef]
- Sarlegna, F.R.; Sainburg, R.L. The roles of vision and proprioception in the planning of reaching movements. Adv. Exp. Med. Biol. 2009, 629, 317–335. [Google Scholar] [PubMed]
- Ingemanson, M.L.; Rowe, J.R.; Chan, V.; Wolbrecht, E.T.; Reinkensmeyer, D.J.; Cramer, S.C. Somatosensory system integrity explains differences in treatment response after stroke. Neurology 2019, 92, e1098–e1108. [Google Scholar] [CrossRef] [PubMed]
- Dobato, J.L.; Villanueva, J.A.; Gimenez-Roldan, S. Sensory ataxic hemiparesis in thalamic hemorrhage. Stroke 1990, 21, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Ghez, C.; Sainburg, R. Proprioceptive control of interjoint coordination. Can. J. Physiol. Pharmacol. 1995, 73, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Mohr, J.P.; Foulkes, M.A.; Polis, A.T.; Hier, D.B.; Kase, C.S.; Price, T.R.; Tatemichi, T.K.; Wolf, P.A. Infarct topography and hemiparesis profiles with cerebral convexity infarction: The Stroke Data Bank. J. Neurol. Neurosurg. Psychiatry 1993, 56, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Johnston, K.C.; Homer, D.; Wityk, R.; Koroshetz, W.; Truskowski, L.L.; Haley, E.C. Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. The RANTTAS Investigators. Stroke 1999, 30, 293–298. [Google Scholar] [CrossRef] [PubMed]
Paralysis (Range) | Sex, Age | Days | Stroke Type (Lesion), Paretic Side | SIAS U/E | Sensory Loss | |
---|---|---|---|---|---|---|
LT | Pos | |||||
Severe (1–9) | M, 36 | 78 | Hemorrhage (Putamen), R | 0 | 0 | Complete |
M, 56 | 59 | Hemorrhage (Thalamus), R | 1 | 1 | - | |
M, 58 | 62 | Hemorrhage (Putamen), R | 1 | 2 | - | |
F, 61 | 77 | Hemorrhage (Thalamus), L | 2 | 3 | - | |
M, 75 | 54 | Ischemic (Basal ganglia, Corona radiata), L | 3 | 3 | - | |
M, 58 | 70 | Hemorrhage (Putamen), L | 3 | 3 | - | |
M, 75 | 58 | Ischemic (Putamen, Corona radiata), L | 3 | 3 | - | |
M, 58 | 70 | Hemorrhage (Putamen), R | 3 | 3 | - | |
M, 71 | 63 | Hemorrhage (Putamen), L | 3 | 3 | - | |
M, 52 | 69 | Hemorrhage (Thalamus), L | 3 | 3 | - | |
Moderate (10–25) | M, 59 | 74 | Hemorrhage (Putamen), L | 0 | 0 | Complete |
M, 61 | 78 | Hemorrhage (Subcortical), L | 1 | 1 | - | |
F, 59 | 77 | Hemorrhage (Putamen), R | 2 | 2 | - | |
F, 30 | 54 | Hemorrhage (Putamen), L | 2 | 2 | - | |
F, 65 | 71 | Hemorrhage (Putamen), L | 2 | 2 | - | |
M, 58 | 45 | Ischemic (Middle cerebral artery), R | 2 | 2 | - | |
M, 62 | 67 | Ischemic (Putamen), R | 3 | 3 | - | |
M, 83 | 71 | Ischemic (Internal carotid artery), L | 3 | 3 | - | |
Mild (26–30) | M, 75 | 69 | Ischemic (Internal carotid artery), L | 0 | 0 | Complete |
M, 79 | 89 | Ischemic (Atherothrombotic brain), R | 2 | 2 | - | |
M, 66 | 50 | Ischemic (Basal ganglia lacunar), L | 2 | 2 | - | |
F, 61 | 52 | Hemorrhage (Thalamus), L | 3 | 3 | - |
Motor Paralysis | Sensory Loss | FMA-UE | InMotion2-Evaluation | ||||||
---|---|---|---|---|---|---|---|---|---|
S/E (0–30) | Total (0–54) | RE (cm) | PE (cm) | ||||||
pre | post | pre | post | pre | post | pre | post | ||
Severe | Complete | 8 | 9 | 8 | 9 | 11.0 | 8.4 | 4.6 | 2.8 |
- | 2 | 2 | 4 | 4 | 10.9 | 3.4 | 2.3 | 2.1 | |
- | 3 | 13 | 3 | 13 | 5.8 | 2.4 | 1.4 | 1.5 | |
- | 5 | 8 | 6 | 17 | 0.9 | 0.8 | 1.2 | 1.0 | |
- | 6 | 7 | 6 | 8 | 10.5 | 1.7 | 3.8 | 2.0 | |
- | 4 | 4 | 6 | 6 | 7.6 | 0.8 | 2.0 | 1.3 | |
- | 6 | 9 | 9 | 13 | 6.7 | 1.6 | 1.4 | 1.4 | |
- | 8 | 10 | 9 | 11 | 4.4 | 1.2 | 2.1 | 1.5 | |
- | 6 | 6 | 7 | 8 | 6.2 | 1.6 | 1.6 | 0.9 | |
- | 7 | 7 | 14 | 15 | 7.7 | 1.0 | 1.9 | 1.0 | |
Avg | 5.2 | 7.3 | 7.1 | 10.6 | 6.7 | 1.6 | 2.0 | 1.4 | |
SD | 1.9 | 3.2 | 3.3 | 4.3 | 3.0 | 0.8 | 0.8 | 0.4 | |
Moderate | Complete | 23 | 23 | 42 | 38 | 2.3 | 0.9 | 2.4 | 1.5 |
- | 14 | 14 | 15 | 16 | 6.6 | 0.8 | 2.5 | 0.9 | |
- | 17 | 22 | 31 | 44 | 0.8 | 0.9 | 0.9 | 0.7 | |
- | 13 | 24 | 17 | 38 | 1.0 | 0.8 | 0.9 | 0.9 | |
- | 23 | 24 | 35 | 46 | 0.8 | 0.9 | 0.7 | 0.5 | |
- | 13 | 16 | 13 | 17 | 1.9 | 0.9 | 1.5 | 1.0 | |
- | 21 | 21 | 22 | 22 | 0.9 | 0.9 | 1.0 | 0.7 | |
- | 17 | 18 | 15 | 16 | 1.0 | 0.9 | 0.6 | 0.7 | |
Avg | 16.9 | 19.9 | 21.1 | 28.4 | 1.9 | 0.9 | 1.2 | 0.8 | |
SD | 3.9 | 3.9 | 8.6 | 13.7 | 2.1 | 0.1 | 0.7 | 0.2 | |
Mild | Complete | 30 | 30 | 51 | 52 | 1.2 | 0.8 | 0.9 | 0.7 |
- | 28 | 28 | 51 | 51 | 1.0 | 0.8 | 0.5 | 0.6 | |
- | 29 | 30 | 52 | 53 | 0.9 | 0.8 | 0.9 | 0.7 | |
- | 27 | 30 | 48 | 52 | 0.9 | 0.7 | 0.7 | 0.4 | |
Avg | 28.0 | 29.3 | 50.3 | 52.0 | 0.9 | 0.8 | 0.7 | 0.6 | |
SD | 1.0 | 1.2 | 2.1 | 1.0 | 0.1 | 0.1 | 0.2 | 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyasaka, H.; Takeda, K.; Ohnishi, H.; Orand, A.; Sonoda, S. Effect of Sensory Loss on Improvements of Upper-Limb Paralysis Through Robot-Assisted Training: A Preliminary Case Series Study. Appl. Sci. 2019, 9, 3925. https://doi.org/10.3390/app9183925
Miyasaka H, Takeda K, Ohnishi H, Orand A, Sonoda S. Effect of Sensory Loss on Improvements of Upper-Limb Paralysis Through Robot-Assisted Training: A Preliminary Case Series Study. Applied Sciences. 2019; 9(18):3925. https://doi.org/10.3390/app9183925
Chicago/Turabian StyleMiyasaka, Hiroyuki, Kotaro Takeda, Hitoshi Ohnishi, Abbas Orand, and Shigeru Sonoda. 2019. "Effect of Sensory Loss on Improvements of Upper-Limb Paralysis Through Robot-Assisted Training: A Preliminary Case Series Study" Applied Sciences 9, no. 18: 3925. https://doi.org/10.3390/app9183925
APA StyleMiyasaka, H., Takeda, K., Ohnishi, H., Orand, A., & Sonoda, S. (2019). Effect of Sensory Loss on Improvements of Upper-Limb Paralysis Through Robot-Assisted Training: A Preliminary Case Series Study. Applied Sciences, 9(18), 3925. https://doi.org/10.3390/app9183925