Performance Analysis of Cooperative Non-Orthogonal Multiple Access in Visible Light Communication
Abstract
:1. Introduction
2. System Model
2.1. VLC Channel Model
2.2. PD-NOMA Transmission
2.3. Cooperative PD-NOMA
2.3.1. The Direct Transmission Phase
2.3.2. Cooperative Phase
3. BER Analytical Expression
3.1. Non-Cooperative PD-NOMA
3.2. Cooperative PD-NOMA
3.2.1. Single Relay
3.2.2. Multiple Relays
4. Numerical Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bawazir, S.S.; Sofotasios, P.C.; Muhaidat, S.; Al-Hammadi, Y.; Karagiannidis, G.K. Multiple Access for Visible Light Communications: Research Challenges and Future Trends. IEEE Access 2018, 6, 26167–26174. [Google Scholar] [CrossRef]
- Wang, S.W.; Chen, F.; Liang, L.; He, S.; Wang, Y.; Chen, X.; Lu, W. A high-performance blue filter for a white-led-based visible light communication system. IEEE Wirel. Commun. 2015, 22, 61–67. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Liu, Q.; Lu, W. High-Speed Visible Light Communications: Enabling Technologies and State of the Art. Appl. Sci. 2018, 8, 589. [Google Scholar] [CrossRef]
- Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. LED based indoor visible light communications: State of the art. IEEE Commun. Surv. Tutor. 2015, 17, 1649–1678. [Google Scholar] [CrossRef]
- Mansour, A.; Mesleh, R.; Abaza, M. New challenges in wireless and free space optical communications. Opt. Lasers Eng. 2017, 89, 95–108. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Chun, H.; Faulkner, G.; Cameron, K.; Jalajakumari, A.V.N.; Henderson, R.; Tsonev, D.; Ijaz, M.; Chen, Z.; Haas, H.; et al. High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations. IEEE J. Sel. Areas Commun. 2015, 33, 1750–1757. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Marshoud, H.; Kapinas, V.M.; Karagiannidis, G.K.; Muhaidat, S. Non-orthogonal multiple access for visible light communications. IEEE Photonics Technol. Lett. 2016, 28, 51–54. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Yu, H.-Y.; Wang, D.-M. Energy Efficient Transceiver Design for NOMA VLC Downlinks with Finite-Alphabet Inputs. Appl. Sci. 2018, 8, 1823. [Google Scholar] [CrossRef]
- Yin, L.; Wu, X.; Haas, H. On the performance of non-orthogonal multiple access in visible light communication. In Proceedings of the 2015 IEEE 26th Annual Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 1354–1359. [Google Scholar]
- Yin, L.; Popoola, W.O.; Wu, X.; Haas, H. Performance Evaluation of Non-Orthogonal Multiple Access in Visible Light Communication. IEEE Trans. Commun. 2016, 64, 5162–5175. [Google Scholar] [CrossRef] [Green Version]
- Kizilirmak, R.C.; Rowell, C.R.; Uysal, M. Non-orthogonal multiple access (NOMA) for indoor visible light communications. In Proceedings of the 4th International Workshop on Optical Wireless Communications (IWOW), Istanbul, Turkey, 7–8 September 2015; pp. 98–101. [Google Scholar]
- Laneman, J.N.; Tse, D.N.C.; Wornell, G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Taher, M.A.; Abaza, M.; Fedawy, M.; Aly, M.H. Relay Selection Schemes for FSO Communications over Turbulent Channels. Appl. Sci. 2019, 9, 1281. [Google Scholar] [CrossRef]
- Men, J.; Ge, J. Non-Orthogonal Multiple Access for Multiple-Antenna Relaying Networks. IEEE Commun. Lett. 2015, 19, 1686–1689. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, M.; Poor, H.V. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 2015, 19, 1462–1465. [Google Scholar] [CrossRef]
- Zeng, L.; O’Brien, D.C.; Minh, H.L.; Faulkner, G.E.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting. IEEE J. Sel. Areas Commun. 2009, 27, 1654–1662. [Google Scholar] [CrossRef]
- Kahn, J.M.; Barry, J.R. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Wang, T.; Cano, A.; Giannakis, G.B.; Laneman, J.N. High-performance Cooperative Demodulation With Decode-and-Forward Relays. IEEE Trans. Commun. 2007, 55, 1427–1438. [Google Scholar] [CrossRef]
- Marshoud, H.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K.; Sharif, B.S. On the Performance of Visible Light Communication Systems with Non-Orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 2017, 16, 6350–6364. [Google Scholar] [CrossRef]
Time Slot | Cooperative Phase Process | ||
---|---|---|---|
1 | UM transmits messages intended for UM−1 through U1 using the PD-NOMA concept. | UM−1 combines the received signals from light-emitting diode and UM using the maximum ratio combining technique. | UM−1 decodes the maximum ratio combining signal to extract U1, U2, …, UM−1, messages using successive interference cancellation. |
2 | UM−1 transmits messages intended for UM−2 through U1 using the PD-NOMA concept. | UM−2 combines the received signals from light-emitting diode, UM and UM−1, using the maximum ratio combining technique. | UM−2 decodes the maximum ratio combining signal to extract U1, U2, …, UM−2, messages using successive interference cancellation. |
M − 1 | U2 transmits message intended for U1. | U1 combines the received signals form light-emitting diode, UM, …, U2, using maximum ratio combining technique. | U1 decodes its own message. |
Description | Symbol | Value |
---|---|---|
LED semi-angle | 50° | |
PD FOV | 45° | |
Refractive index | n | 1.5 |
Optical filter gain | 1 | |
Responsivity | Rp | 1 A/W |
PD detection area | Ak | 1 |
Bandwidth | B | 10 MHz |
open-loop voltage gain | 10 | |
fixed capacitance of PD | 112 | |
Absolute temperature | 298 K | |
FET transconductance | 30 mS | |
Noise bandwidth factors | 0.0868 | |
FET channel noise factor | 1.5 | |
Background current | 5100 μA | |
Noise bandwidth factors | 0.562 |
User | Location | FOV | Channel Gain |
---|---|---|---|
U1 | (2.5, 2.5, 1.25) | 60° | 0.2835 × |
U2 | (2.4, 2.4, 1.25) | 45° | 0.4787 × |
U3 | (2.3, 2.3, 1.25) | 45° | 0.5272 × |
User | Location |
---|---|
U1 | (2.9, 1.9, 1.25) |
U2 | (1.5, 1.7, 1.25) |
U3 | (2.2, 2.5, 1.25) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadat, H.; Abaza, M.; Gasser, S.M.; ElBadawy, H. Performance Analysis of Cooperative Non-Orthogonal Multiple Access in Visible Light Communication. Appl. Sci. 2019, 9, 4004. https://doi.org/10.3390/app9194004
Sadat H, Abaza M, Gasser SM, ElBadawy H. Performance Analysis of Cooperative Non-Orthogonal Multiple Access in Visible Light Communication. Applied Sciences. 2019; 9(19):4004. https://doi.org/10.3390/app9194004
Chicago/Turabian StyleSadat, Hesham, Mohamed Abaza, Safa M. Gasser, and Hesham ElBadawy. 2019. "Performance Analysis of Cooperative Non-Orthogonal Multiple Access in Visible Light Communication" Applied Sciences 9, no. 19: 4004. https://doi.org/10.3390/app9194004
APA StyleSadat, H., Abaza, M., Gasser, S. M., & ElBadawy, H. (2019). Performance Analysis of Cooperative Non-Orthogonal Multiple Access in Visible Light Communication. Applied Sciences, 9(19), 4004. https://doi.org/10.3390/app9194004