Analytical Performance Prediction of an Electromagnetic Launcher and Its Validation by Numerical Analyses and Experiments
Abstract
:Featured Application
Abstract
1. Introduction
2. Analytical Performance Prediction of EML
- Set the initial conditions—charged capacitor voltage, projectile loaded position, and initial velocity.
- Find Lorentz force from initial condition.
- Find velocity () and displacement () from [26]. Here, ‘m’ is projectile mass.
- Update resistance () and inductance () according to projectile displacement .
- Find current ( and voltage () through a series equivalent RLC circuit analysis after from a previous time. The determined current and voltage will be the initial conditions for the next step.
- Go to 2nd step until the objective velocity or rail length are attained.
3. EML Numerical Analysis with 750 mm Length Rail
4. EML Experiment with 750 mm Length Rail
5. Results
- The current values from the analytical method and experiment results are similar.
- The velocity values from the analytical method and numerical analysis results are also similar.
- Every case of muzzle velocity is similar.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Inductance | H | |
Inductance gradient | H/m | |
Current | A | |
Resistance | Ω | |
Voltage | V |
References
- Hogg, J. Keynote address: History of the U.S. navy railgun program. IEEE Trans. Plasma Sci. 2017, 45, 1069–1070. [Google Scholar] [CrossRef]
- Ma, W.; Lu, J.; Liu, Y. Research progress of electromagnetic launch technology. IEEE Trans. Plasma Sci. 2019, 47, 2197–2205. [Google Scholar] [CrossRef]
- Doerry, N.; Amy, J.; Krolick, C. History and the status of electric ship propulsion, integrated power systems, and future trends in the U.S. Navy. Proc. IEEE 2015, 103, 2243–2251. [Google Scholar] [CrossRef]
- Hundertmark, S.; Vincent, G.; Simicic, D. Developing a Launch Package for the PEGASUS Launcher. IEEE Trans. Plasma Sci. 2017, 45, 1234–1238. [Google Scholar] [CrossRef] [Green Version]
- Hundertmark, S.; Vincent, G.; Simicic, D.; Schneider, M. Increasing Launch Efficiency with the PEGASUS Launcher. IEEE Trans. Plasma Sci. 2017, 45, 1607–1613. [Google Scholar] [CrossRef]
- Hundertmark, S.; Simicic, D.; Vincent, G. Acceleration of Aluminum Booster Projectiles with PEGASUS. IEEE Trans. Plasma Sci. 2015, 43, 1147–1151. [Google Scholar] [CrossRef]
- Neely, J.; Rashkin, L.; Cook, M.; Wilson, D.; Glover, S. Evaluation of power flow control for an all-electric warship power system with pulsed load applications. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 3537–3544. [Google Scholar]
- Ładyżyńska-Kozdraś, E.; Sibilska-Mroziewicz, A.; Sławomir, C.; Krzysztof, F.; Sibilski, K.; Wróblewski, W. Take-off and landing magnetic system for UAV carriers. J. Mar. Eng. Technol. 2017, 16, 298–304. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Kotov, A.V.; Polistchook, V.P.; Shurupov, A.V.; Shurupov, M.A. Electromagnetic launcher for heavy projectiles. J. Phys. Conf. Ser. 2017, 927, 012027. [Google Scholar] [CrossRef]
- Chunyan, L.; Baoquan, K. Research on Electromagnetic Force of Large Thrust Force PMLSM Used in Space Electromagnetic Launcher. IEEE Trans. Plasma Sci. 2013, 41, 1209–1213. [Google Scholar] [CrossRef]
- McNab, I.R. Launch to space with an electromagnetic railgun. IEEE Trans. Plasma Sci. 2003, 39, 205–304. [Google Scholar] [CrossRef]
- Fair, H.D. Advances in Electromagnetic Launch Science and Technology and Its Applications. IEEE Trans. Plasma Sci. 2009, 45, 225–230. [Google Scholar] [CrossRef]
- Electric propulsion for satellites and spacecraft: Established technologies and novel approaches. Plasma Sources Sci. Technol. 2016, 25, 033002. [CrossRef]
- Prospects and physical mechanisms for photonic space propulsion. Nat. Photonics 2018, 12, 649–657. [CrossRef]
- Choueiri, E.Y. A critical history of electric propulsion: The first 50 years (1906–1956). J. Propul. Power 2004, 20, 193–203. [Google Scholar] [CrossRef]
- Levchenko, I.; Keidar, M.; Cantrell, J.; Wu, Y.L.; Kuninaka, H.; Bazaka, K.; Xu, S. Explore space using swarms of tiny satellites. Nature 2018, 562, 185–187. [Google Scholar] [CrossRef] [Green Version]
- Piątek, Z.; Baron, B.; Szczegielniak, T.; Kusiak, D.; Pasierbek, A. Inductance of a Long Two-Rectangular Busbar Single-Phase Line. Available online: http://pe.org.pl/articles/2013/6/57.pdf (accessed on 28 September 2019).
- Keshtkar, A.; Maleki, T.; Kalantarnia, A.; Keshtkar, A. Determination of Optimum Rails Dimensions in Railgun by Lagrange’s Equations. In Proceedings of the 2008 14th Symposium on Electromagnetic Launch Technology, Victoria, BC, Canada, 10–13 June 2008. [Google Scholar]
- Marshall, R.A.; Ying, W. Railguns: Their Science and Technology; China Machine Press: Beijing, China, 2004. [Google Scholar]
- Yin, Q.; Zhang, H.; Li, H.J.; Yang, Y.X. Analysis of in-bore magnetic field in C-shaped armature railguns. Def. Technol. 2019, 15, 83–88. [Google Scholar] [CrossRef]
- Račkauskas, J.; Kačianauskas, R.; Schneider, M. Investigation of armature-rail interaction in linear electromagnetic launcher. J. Vibroeng. 2018, 20, 1234–1239. [Google Scholar] [CrossRef]
- Ceylan, D.; Güdelek, M.U.; Keysan, O. Armature Shape Optimization of an Electromagnetic Launcher Including Contact Resistance. IEEE Trans. Plasma Sci. 2018, 46, 3619–3627. [Google Scholar] [CrossRef]
- Ghassemi, M.; Barsi, Y.M. Effect of liquid film (indium) on thermal and electromagnetic distribution of an electromagnetic launcher with new armature. IEEE Trans. Plasma Sci. 2005, 41, 408–413. [Google Scholar] [CrossRef]
- Shirong, Y.; Ying, W.; Shanbao, C.; Guohua, P.; Xuqiong, L.; Wei, W. A novel type rail-coil hybrid electromagnetic launcher. IEEE Trans. Plasma Sci. 2005, 41, 266–267. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Li, R.; Duan, H.; Jin, H. Structural Optimization of Electromagnetic Launcher in Active Electromagnetic Armor. IEEE Trans. Plasma Sci. 2011, 39, 487–491. [Google Scholar] [CrossRef]
- Kim, S.H.; An, S.; Lee, B.; Lee, Y.H.; Yang, K.S. Modeling and circuit analysis of an electromagnetic launcher system for transient current waveforms. In Proceedings of the 2014 17th International Symposium on Electromagnetic Launch Technology, San Diego, CA, USA, 7–11 July 2014. [Google Scholar]
- Kim, H.K.; Kang, B.S.; Kim, J. Muzzle velocity estimation of an electromagnetic launcher using B-dot probe. Int. J. Appl. Electromagn. Mech. 2019. [Google Scholar] [CrossRef]
Copper rail size | 750 mm (l) × 30 mm (h) × 5 mm (w) |
One capacitor | 450 V and 6800 μF |
Equivalent capacitor | 450 V and 0.68 F |
Copper wire length | 10 m |
Copper wire diameter | 10 cm |
Projectile mass | 6 g |
Resistance of capacitor bank | 2.405 mΩ |
Inductance of capacitor bank | 14.25 μH |
Resistance gradient of rail | 11.47 μΩ/m |
Inductance gradient of rail | 35.933 μH/m |
Initial capacitor voltage | 300 V |
Initial current on EML system | 0 A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-K.; Kang, B.-S.; Moon, Y.H.; Kim, J. Analytical Performance Prediction of an Electromagnetic Launcher and Its Validation by Numerical Analyses and Experiments. Appl. Sci. 2019, 9, 4063. https://doi.org/10.3390/app9194063
Kim H-K, Kang B-S, Moon YH, Kim J. Analytical Performance Prediction of an Electromagnetic Launcher and Its Validation by Numerical Analyses and Experiments. Applied Sciences. 2019; 9(19):4063. https://doi.org/10.3390/app9194063
Chicago/Turabian StyleKim, Hong-Kyo, Beom-Soo Kang, Young Hoon Moon, and Jeong Kim. 2019. "Analytical Performance Prediction of an Electromagnetic Launcher and Its Validation by Numerical Analyses and Experiments" Applied Sciences 9, no. 19: 4063. https://doi.org/10.3390/app9194063
APA StyleKim, H. -K., Kang, B. -S., Moon, Y. H., & Kim, J. (2019). Analytical Performance Prediction of an Electromagnetic Launcher and Its Validation by Numerical Analyses and Experiments. Applied Sciences, 9(19), 4063. https://doi.org/10.3390/app9194063