Channel and Bit Adaptive Power Control Strategy for Uplink NOMA VLC Systems
Abstract
:1. Introduction
1.1. Related Work and Motivation
1.2. Contributions
1.3. Paper Organization
2. System Model
3. Adaptive Power Control Strategy for Uplink NOMA VLC
3.1. Channel and Bit Adaptive Power Control
3.2. Low-Complexity Receiver Design
4. Simulations
- (1)
- Gain Ratio Power Allocation (GRPA) [17]: The signal transmitted by the i-th LED is denoted by , where and , . In this simulation, we set .
- (2)
- (3)
- Time Division Multiple Access (TDMA) [3]: With the successive N time slots, the transmitted signal of the N LEDs is given by , where , .
- (4)
- Adaptive Power Control (APC): Our proposed APC strategy is given in Algorithm 1.
4.1. BER Performance Analysis for Stationary Locations
4.2. BER Performance Analysis for Random Locations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using led lights. IEEE Trans. Consumer Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- O’Brien, D.C.; Zeng, L.; Le-Minh, H.; Faulkner, G.; Walewski, J.W.; Randel, S. Visible light communications: Challenges and possibilities. In Proceedings of the 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 15–18 September 2008; pp. 1–5. [Google Scholar]
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Jovicic, A.; Li, J.; Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Gancarz, J.; Elgala, H.; Little, T.D.C. Impact of lighting requirements on vlc systems. IEEE Commun. Mag. 2013, 51, 34–41. [Google Scholar] [CrossRef]
- Pešek, P.; Zvanovec, S.; Chvojka, P.; Bhatnagar, M.R.; Ghassemlooy, Z.; Saxena, P. Mobile User Connectivity in Relay-Assisted Visible Light Communications. Sensors 2018, 18, 1125. [Google Scholar] [CrossRef]
- Myung, H.G.; Lim, J.; Goodman, D.J. Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 2006, 1, 30–38. [Google Scholar] [CrossRef]
- Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. LED Based Indoor Visible Light Communications: State of the Art. IEEE Commun. Surveys Tuts. 2015, 17, 1649–1678. [Google Scholar] [CrossRef]
- Kim, S.M.; Baek, M.W.; Nahm, S.H. Visible light communication using TDMA optical beamforming. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 56. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Wang, W.Y.; Xin, G. Faster-than-nyquist signal design for multiuser multicell indoor visible light communications. IEEE Photonics J. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yu, H.Y.; Zhang, J.K.; Zhu, Y.J. Signal-cooperative multilayer-modulated VLC systems for automotive applications. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Saito, Y.; Benjebbour, A.; Kishiyama, Y.; Nakamura, T. System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013; pp. 611–615. [Google Scholar]
- Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 2014, 21, 1501–1505. [Google Scholar] [CrossRef]
- Benjebbour, A.; Saito, Y.; Kishiyama, Y.; Li, A.; Harada, A.; Nakamura, T. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Okinawa, Japan, 12–15 November 2013; pp. 770–774. [Google Scholar]
- Yin, L.; Wu, X.; Haas, H. On the performance of non-orthogonal multiple access in visible light communication. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 1354–1359. [Google Scholar]
- Marshoud, H.; Kapinas, V.M.; Karagiannidis, G.K.; Muhaidat, S. Non-orthogonal multiple access for visible light communications. IEEE Photonics Technol. Lett. 2016, 28, 51–54. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Li, Y. Fair non-orthogonal multiple access for visible light communication downlinks. IEEE Wirel. Commun. Lett. 2017, 6, 66–69. [Google Scholar] [CrossRef]
- Marshoud, H.; Muhaidat, S.; Sofotasios, P.C.; Hussain, S.; Imran, M.A.; Sharif, B.S. Optical Non-Orthogonal Multiple Access for Visible Light Communication. IEEE Wirel. Commun. 2018, 25, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, J.; Wang, J.; Yang, J.; Xiong, J.; Gui, G. Symbol error rate performance analysis of non-orthogonal multiple access for visible light communications. China Commun. 2017, 14, 153–161. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Yu, H.Y.; Wang, D.M. Energy Efficient Transceiver Design for NOMA VLC Downlinks with Finite-Alphabet Inputs. Appl. Sci. 2018, 8, 1823. [Google Scholar] [CrossRef]
- Moreira, A.J.C.; Valadas, R.T.; de Duarte, A.M. Performance of infrared transmission systems under ambient light interference. IEE Proc. Optoelectron. 1996, 143, 339–346. [Google Scholar] [CrossRef]
- Boucouvalas, A.C. Indoor ambient light noise and its effect on wireless optical links. IEE Proc. Optoelectron. 1996, 143, 334–338. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Alves, L.; Khalighi, M.; Zvanovec, S.; Uysal, M. Visible Light Communications: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498767538. [Google Scholar]
- Kahn, J.M.; Barry, J.R. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Wu, Y.F.; Xu, W.; Zhao, C.M. Optimal power allocation for downlink two-user non-orthogonal multiple access in visible light communication. J. Commun. Inf. Netw. 2017, 2, 57–64. [Google Scholar] [CrossRef]
- Xu, K.; Yu, H.; Zhu, Y. Channel-Adapted Spatial Modulation for Massive MIMO Visible Light Communications. IEEE Photonics Technol. Lett. 2016, 28, 2693–2696. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Yu, H.Y.; Zhang, Y.Y.; Wang, D.M. Optimization of Finite-Alphabet Signaling for Two-User Multiaccess VLC Systems. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Boucouvalas, A.C. Asymmetry of free space optical links. In Proceedings of the SPIE on All optical Communication Systems: Architecture, Control and Network Issues, Philadelphia, PA, USA, 25–26 October 1995; pp. 69–76. [Google Scholar]
- Boucouvalas, A.C.; Barker, P. Asymmetric throughput in IrDA links. IEE Colloquium Opt. Wirel. Commun. 1999, 7/1–7/5. [Google Scholar] [CrossRef]
- Boucouvalas, A.C.; Barker, P. Asymmetric throughput in optical wireless links. In Proceedings of the 2nd Electronic Circuits and Systems Conference, Bratislava, Slovakia, 6–8 September 1999; pp. 129–134. [Google Scholar]
- Boucouvalas, A.C.; Barker, P. Asymmetry in optical wireless links. IEE Proc. Optoelectron. 2000, 147, 315–321. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yu, H.Y.; Zhang, J.K. Block Precoding for Peak-Limited MISO Broadcast VLC: Constellation-Optimal Structure and Addition-Unique Designs. IEEE J. Sel. Areas Commun. 2018, 36, 78–90. [Google Scholar] [CrossRef]
- Cai, H.B.; Zhang, J.; Zhu, Y.J.; Zhang, J.K.; Yang, X. Optimal Constellation Design for Indoor 2 × 2 MIMO Visible Light Communications. IEEE Commun. Lett. 2016, 20, 264–267. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Liang, W.F.; Zhang, J.K.; Zhang, Y.Y. Space-Collaborative Constellation Designs for MIMO Indoor Visible Light Communications. IEEE Photonics Technol. Lett. 2015, 27, 1667–1670. [Google Scholar]
Parameter | Value |
---|---|
Room size | |
PD detector area | |
Field-of-view angle | |
Gain of optical concentrator | |
Half-power angle | |
Gain of optical filter | |
Height of user plane |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-Y.; Yu, H.-Y.; Wang, D.-M. Channel and Bit Adaptive Power Control Strategy for Uplink NOMA VLC Systems. Appl. Sci. 2019, 9, 220. https://doi.org/10.3390/app9020220
Wang Z-Y, Yu H-Y, Wang D-M. Channel and Bit Adaptive Power Control Strategy for Uplink NOMA VLC Systems. Applied Sciences. 2019; 9(2):220. https://doi.org/10.3390/app9020220
Chicago/Turabian StyleWang, Zhen-Yu, Hong-Yi Yu, and Da-Ming Wang. 2019. "Channel and Bit Adaptive Power Control Strategy for Uplink NOMA VLC Systems" Applied Sciences 9, no. 2: 220. https://doi.org/10.3390/app9020220
APA StyleWang, Z. -Y., Yu, H. -Y., & Wang, D. -M. (2019). Channel and Bit Adaptive Power Control Strategy for Uplink NOMA VLC Systems. Applied Sciences, 9(2), 220. https://doi.org/10.3390/app9020220