Synergistic Mechanism of Rare-Earth Modification TiO2 and Photodegradation on Benzohydroxamic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of RE/TiO2
2.3. Characterization of RE/TiO2
2.4. Degradation of BHA by RE/TiO2
2.5. Recycle Test of RE/TiO2
2.6. Computational Parameters
3. Results and Discussions
3.1. Characterization
3.1.1. Texture Properties
3.1.2. Optical Absorption Property
3.1.3. Composition and Chemical State Analysis
3.1.4. Analysis of SBET and Pore Size Distribution
3.2. Computation and Analysis
3.3. Photodegradation on BHA
3.3.1. Effect of Doped Amount of Rare Earth
3.3.2. Effect of Calcination Temperature
3.3.3. Stability of RE/TiO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qijun, K.; Yizheng, X. Comparison of the toxicities of six mine floatation agents to algae. Acta Hydrobiol. Sin. 1992, 16, 245–250. (In Chinese) [Google Scholar]
- Yan, H.; Lian, W.X. Degradation and influence factors of ammonium butyl aerofloat in paddy soil. Acta Sci. Circumst. 2012, 32, 1454–1458. (In Chinese) [Google Scholar]
- International Agency for Research on Cancer. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide (Part 1, Part 2, Part 3). In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 1999; Volume 71, pp. 43–108. [Google Scholar]
- Schaider, L.A.; Senn, D.B. Characterization of Zinc, Lead, and Cadmium in Mine Waste: Implications for Transport, Exposure, and Bioavailability. Environ. Sci. Technol. 2007, 41, 4164–4171. [Google Scholar] [CrossRef] [PubMed]
- Ayranci, E.; Conway, B.E. Adsorption and electrosorption of ethyl xanthate and thiocyanate anions at high-Area carbon-cloth electrodes studied by in situ UV spectroscopy: Development of procedures for wastewater purification. Anal. Chem. 2001, 73, 1181–1189. [Google Scholar] [CrossRef]
- Natarajan, K.A.; Prakasan, M.R.S. Biodegradation of sodium isopropyl xanthate by Paenibacillus polymyxa and Pseudomonas putida. Miner. Metall. Process. 2013, 30, 226–232. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, K. Fe(III) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate. Chemosphere 2017, 181, 190–196. [Google Scholar] [CrossRef]
- Pinho, L.; Hernández-Garrido, J.C. 2D and 3D characterization of a surfactant-synthesized TiO2–SiO2 mesoporous photocatalyst obtained at ambient temperature. Phys. Chem. Chem. Phys. 2013, 15, 2800–2808. [Google Scholar] [CrossRef]
- Wenjun, Z. Study on the Biodegradability of Hydroxamic Acid Collectors; Wuhan University of Technology: Wuhan, China, 2012. [Google Scholar]
- Luo, X.; Wang, J. Degradation and mineralization of benzohydroxamic acid by synthesized mesoporous La/TiO2. Int. J. Environ. Res. Public Health 2016, 13, 997. [Google Scholar] [CrossRef]
- Lyu, J.; Gao, J. Construction of homojunction-adsorption layer on anatase TiO2 to improve photocatalytic mineralization of volatile organic compounds. Appl. Catal. B Environ. 2017, 202, 664–670. [Google Scholar] [CrossRef]
- He, D.; Huang, X. Synthesis and catalytic performance of Yb3+, Er3+ doped titanium dioxide. Asian J. Chem. 2015, 27, 1477–1480. [Google Scholar] [CrossRef]
- Saqib, N.U.; Adnan, R. A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater. Environ. Sci. Pollut. Res. 2016, 23, 15941–15951. [Google Scholar] [CrossRef] [PubMed]
- Lara-López, Y.; García-Rosales, G. Synthesis and characterization of carbon-TiO2-CeO2 composites and their applications in phenol degradation. J. Rare Earths 2017, 35, 551–558. [Google Scholar] [CrossRef]
- Reszczyńska, J.; Grzyb, T. Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B Environ. 2015, 163, 40–49. [Google Scholar] [CrossRef]
- Sun, D.; Wang, K. Synthesis and photocatalytic activity of sulfate modified Nd-doped TiO2 under visible light irradiation. J. Rare Earth. 2015, 33, 491–497. [Google Scholar] [CrossRef]
- Devi, L.G.; Kumar, S.G. Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light. Appl. Surf. Sci. 2012, 261, 137–146. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 2016, 605, 2–19. [Google Scholar] [CrossRef]
- Li, J.; Yang, X. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide. Appl. Surf. Sci. 2009, 255, 3731–3738. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L. The progress of TiO2 nanocrystals doped with rare earth ions. J. Nanomater. 2012, 2012, 13. [Google Scholar]
- Chai, Y.; Lin, L. Efficient visible-light photocatalysts from Gd–La codoped TiO2 nanotubes. Ceram. Int. 2014, 40, 2691–2696. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, N. Synthesis of Yb3+/Er3+ co-doped Bi2WO6 nanosheets with enhanced photocatalytic activity. Mater. Lett. 2016, 163, 16–19. [Google Scholar] [CrossRef]
- Trujillo-Navarrete, B.; del Pilar Haro-Vázquez, M. Effect of Nd3+ doping on structure, microstructure, lattice distortion and electronic properties of TiO2 nanoparticles. J. Rare Earth. 2017, 35, 259–270. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Q. Effects of lanthanide doping on electronic structures and optical properties of anatase TiO2 from density functional theory calculations. J. Phys. D Appl. Phys. 2008, 41, 085417. [Google Scholar] [CrossRef]
- Bian, L.; Song, M. Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2. J. Rare Earth. 2009, 27, 461–468. [Google Scholar] [CrossRef]
- Clark Stewart, J.; Segall Matthew, D. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570. [Google Scholar]
- Ren, C.; Wang, G.; Chen, Y.; Chen, Y. Degradation of benzene on Zr-doped TiO2 photocatalysts with a bimodal pore size distribution. Rare Met. 2014, 33, 714–722. [Google Scholar] [CrossRef]
- Fan, W.-Q.; Bai, H.-Y.; Zhang, G.-H.; Yan, Y.-S.; Liu, S.-B.; Shi, W.-D. Titanium dioxide macroporous materials doped with iron: Synthesis and photo-catalytic properties. CrystEngComm 2014, 16, 116–122. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E. Co-doping effect of carbon and yttrium on photocatalytic activity of TiO2 nanoparticles for methyl orange degradation. J. Ovonic Res. 2015, 11, 107–112. [Google Scholar]
- Liang, C.H.; Li, F.B. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes Pigments 2008, 76, 477–484. [Google Scholar] [CrossRef]
- Spadavecchia, F.; Cappelletti, G. Solar photoactivity of nano-N-TiO2 from tertiary amine: Role of defects and paramagnetic species. Appl. Catal. B Environ. 2010, 96, 314–322. [Google Scholar] [CrossRef]
- Liew, S.L.; Zhang, Z. Yb-doped WO3 photocatalysts for water oxidation with visible light. Int. J. Hydrog. Energy 2014, 39, 4291–4298. [Google Scholar] [CrossRef]
- Huang, F.; Guo, Y. Solgel-hydrothermal synthesis of Tb/Tourmaline/TiO2 nano tubes and enhanced photocatalytic activity. Solid State Sci. 2017, 64, 62–68. [Google Scholar] [CrossRef]
- Wand, C.; Li, Y. Synthesis, characterisation and photocatalytic activity of natural zeolite supported Fe/S and Cr/S codoped nano TiO2 photocatalysts. Mater. Technol. 2014, 29, 372–376. [Google Scholar]
- Wu, X.; Fang, S. Thiourea-modified TiO2 nanorods with enhanced photocatalytic activity. Molecules 2016, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Bhunia, M.K. Synthesis, characterization, and biofuel application of mesoporous zirconium oxophosphates. ACS Catal. 2011, 1, 493–501. [Google Scholar] [CrossRef]
- Reszczynska, J.; Grzyb, T. Photocatalytic activity and luminescence properties of RE3+-TiO2 nanocrystals prepared by sol-gel and hydrothermal methods. Appl. Catal. B Environ. 2016, 181, 825–837. [Google Scholar] [CrossRef]
- Wei, Z.-N.; Jia, C.-L. First-principle calculations of the electronic and optical properties of Tm-doped anatase titanium dioxide. Optice 2015, 54, 037107. [Google Scholar] [CrossRef]
- Irie, H.; Watanada, Y. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
Sample | Size (nm) | Sample | Size (nm) | Sample | Size (nm) | Sample | Size (nm) |
---|---|---|---|---|---|---|---|
Pure TiO2 (500 °C) | 19.0 | 0.10%Ce/TiO2 | 16.5 | 0.10%Gd/TiO2 | 14.9 | Pure TiO2 (450 °C) | 14.2 |
0.25%La/TiO2 | 18.4 | 0.20%Ce/TiO2 | 13.3 | 0.20%Gd/TiO2 | 12.7 | 0.10%Yb/TiO2 | 11.9 |
0.50%La/TiO2 | 15.6 | 0.30%Ce/TiO2 | 13.1 | 0.30%Gd/TiO2 | 12.3 | 0.20%Yb/TiO2 | 11.7 |
0.75%La/TiO2 | 13.4 | 0.40%Ce/TiO2 | 12.5 | 0.50%Gd/TiO2 | 12.0 | 0.30%Yb/TiO2 | 11.2 |
1.00%La/TiO2 | 11.5 | 0.50%Ce/TiO2 | 12.4 | 0.70%Gd/TiO2 | 11.9 | 0.50%Yb/TiO2 | 11.1 |
1.00%Gd/TiO2 | 11.5 | 0.70% b/TiO2 | 10.9 | ||||
1.00%Yb/TiO2 | 10.4 |
a/nm | b/nm | c/nm | V/nm3 | |
---|---|---|---|---|
TiO2 (unit cell) | 3.8064 | 3.8064 | 9.6716 | 140.13 |
TiO2 (2 × 2 × 1 supercell) | 7.6126 | 7.6126 | 9.6710 | 560.46 |
La/TiO2 (2 × 2 × 1 supercell) | 7.5917 | 7.5919 | 10.3202 | 594.81 |
Ce/TiO2 (2 × 2 × 1 supercell) | 7.6552 | 7.6555 | 9.9428 | 582.66 |
Gd/TiO2 (2 × 2 × 1 supercell) | 7.6386 | 7.6502 | 9.9168 | 579.48 |
Yb/TiO2 (2 × 2 × 1 supercell) | 7.6290 | 7.6291 | 9.9296 | 577.93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zeng, T.; Zhu, S.; Gu, C. Synergistic Mechanism of Rare-Earth Modification TiO2 and Photodegradation on Benzohydroxamic Acid. Appl. Sci. 2019, 9, 339. https://doi.org/10.3390/app9020339
Wang C, Zeng T, Zhu S, Gu C. Synergistic Mechanism of Rare-Earth Modification TiO2 and Photodegradation on Benzohydroxamic Acid. Applied Sciences. 2019; 9(2):339. https://doi.org/10.3390/app9020339
Chicago/Turabian StyleWang, Chunying, Ting Zeng, Sipin Zhu, and Chuantao Gu. 2019. "Synergistic Mechanism of Rare-Earth Modification TiO2 and Photodegradation on Benzohydroxamic Acid" Applied Sciences 9, no. 2: 339. https://doi.org/10.3390/app9020339
APA StyleWang, C., Zeng, T., Zhu, S., & Gu, C. (2019). Synergistic Mechanism of Rare-Earth Modification TiO2 and Photodegradation on Benzohydroxamic Acid. Applied Sciences, 9(2), 339. https://doi.org/10.3390/app9020339