Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies
Abstract
:Featured Application
Abstract
1. Introduction
2. Pharmacology of Piperine: In Vitro and In Vivo Studies
2.1. Immunomodulatory and Anti-Allergic Effect
2.2. Anti-Diabetic Effect
2.3. Anti-Inflammatory Effect
2.4. Effect of Piperine to the Gastrointestinal Tract
2.5. Antimutagenic and Cancer-Preventive Effect of Piperine
2.6. Anti-Cancer Effect of Piperine
2.6.1. Breast Cancer
2.6.2. Lung Cancer
2.6.3. Genital Cancers
Prostate Cancer
Cervical and Ovarian Cancer
2.6.4. Cancers of the Gastrointestinal Tract
2.6.5. Other Cancer Types
2.7. Enzyme-Related Activity
2.7.1. Monoamine Oxidase Activity
2.7.2. Other Enzymes
2.8. Miscellaneous Activity—Kinase, Inflammation, Diabetes
2.9. Neuroprotective and Other Neurological Effects of Piperine
2.10. Negative Aspects of Piperine
2.11. Antimicrobial Activity of Piperine
2.12. Bioavailability-Enhancing Effect of Piperine
3. Piperine: Human Clinical Trials
3.1. Effect of Piperine on Oral Bioavailability of Drugs and Natural Therapeutic Compounds
3.2. Clinical Trials on Piperine Effect on Human Health
3.2.1. Effect of Piperine on the Digestive Tract
3.2.2. Vitiligo
3.2.3. Other Conditions
3.2.4. Clinical Trials on Black and Red Pepper
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Prasad, D.N. Piperine and its various physicochemical and biological aspects: A review. Open Chem. J. 2017, 3, 75–96. [Google Scholar] [CrossRef]
- Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine—The bioactive compound of black pepper: From isolation to medicinal formulations. Compr. Rev. Food Sci. Food Saf. 2017, 16, 124–140. [Google Scholar] [CrossRef]
- Majeed, M.; Labs, S.; Majeed, M. The medical uses of pepper. Int. Pepper News 2015, 25, 23–31. [Google Scholar]
- Meghwal, M.; Goswami, T.K. Chemical composition, nutritional, medicinal and functional properties of black pepper: A review. Open Access Sci. Rep. 2012, 1, 1–5. [Google Scholar]
- Damanhouri, Z.A. A review on therapeutic potential of Piper nigrum L. (black pepper): The king of spices. Med. Aromat. Plants 2014, 3, 161. [Google Scholar] [CrossRef]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef] [PubMed]
- Mhaske, D.B.; Sreedharan, S.; Mahadik, K.R. Role of piperine as an effective bioenhancer in drug absorption. Pharm. Anal. Acta 2018, 9, 591. [Google Scholar]
- Thiel, A.; Buskens, C.; Woehrle, T.; Etheve, S.; Schoenmakers, A.; Fehr, M.; Beilstein, P. Black pepper constituent piperine: Genotoxicity studies in vitro and in vivo. Food Chem. Toxicol. 2014, 66, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, D.P.; de Castro, F.O.; Alves, A.P.N.N.; Pessoa, C.; de Moraes, M.O.; Silveira, E.R.; Lima, M.A.S.; Elmiro, F.J.M.; de Alencar, N.M.N.; Mesquita, R.O.; et al. In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J. Appl. Toxicol. 2008, 28, 156–163. [Google Scholar] [CrossRef]
- Bernardo, A.R.; da Rocha, J.D.B.; de Lima, M.E.F.; Ricardo, D.D.; da Silva, L.H.P.; Peçanha, L.M.T.; Danelli, M.D.G.M. Modulating effect of the piperine, the main alkaloid from Piper nigrum Linn., on murine B lymphocyte function. Braz. J. Vet. Med. 2015, 37, 209–216. [Google Scholar]
- Lee, Y.M.; Choi, J.H.; Min, W.K.; Han, J.K.; Oh, J.W. Induction of functional erythropoietin and erythropoietin receptor gene expression by gamma-aminobutyric acid and piperine in kidney epithelial cells. Life Sci. 2018, 215, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Aswar, U.; Shintre, S.; Chepurwar, S.; Aswar, M. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharm. Biol. 2015, 53, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, Y.-C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J. Pharm. Pharmacol. 2009, 61, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, F.M.; Sanders, R.A.; Watkins, J.B. Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 2000, 14, 329–334. [Google Scholar] [CrossRef]
- BrahmaNaidu, P.; Nemani, H.; Meriga, B.; Mehar, S.K.; Potana, S.; Ramgopalrao, S. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem. Biol. Interact. 2014, 221, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Ali, Y.; Dhulap, A.; Alam, P.; Pasha, M.A.Q. Novel piperine derivatives with antidiabetic effect as PPAR-γ agonists. Chem. Biol. Drug Des. 2016, 88, 354–362. [Google Scholar] [CrossRef]
- Atal, S.; Agrawal, R.P.; Vyas, S.; Phadnis, P.; Rai, N. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol. Pharm. 2012, 69, 965–969. [Google Scholar]
- Atal, S.; Atal, S.; Vyas, S.; Phadnis, P. Bio-enhancing effect of piperine with metformin on lowering blood glucose level in alloxan induced diabetic mice. Pharmacogn. Res. 2016, 8, 56–60. [Google Scholar] [CrossRef]
- Veeresham, C.; Sujatha, S.; Rani, T.S. Effect of piperine on the pharmacokinetics and pharmacodynamics of glimepiride in normal and streptozotocin-induced diabetic rats. Nat. Prod. Commun. 2012, 7, 1283–1286. [Google Scholar] [CrossRef]
- Jwa, H.; Choi, Y.; Park, U.-H.; Um, S.-J.; Yoon, S.K.; Park, T. Piperine, an LXRα antagonist, protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet. Biochem. Pharmacol. 2012, 84, 1501–1510. [Google Scholar] [CrossRef]
- Park, U.-H.; Jeong, H.-S.; Jo, E.-Y.; Park, T.; Yoon, S.K.; Kim, E.-J.; Jeong, J.-C.; Um, S.-J. Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARγ activity in 3T3-L1 cells. J. Agric. Food Chem. 2012, 60, 3853–3860. [Google Scholar] [CrossRef] [PubMed]
- Reen, R.K.; Jamwal, D.S.; Taneja, S.C.; Koul, J.L.; Dubey, R.K.; Wiebel, F.J.; Singh, J. Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochem. Pharmacol. 1993, 46, 229–238. [Google Scholar] [CrossRef]
- Subramaniam, R.; Kumar, V.; Nalini, N. Lipid-lowering efficacy of piperine from Piper nigrum L. in high-fat diet and antithyroid drug-induced hypercholesterolemic rats. J. Food Biochem. 2006, 30, 405–421. [Google Scholar]
- Sabina, E.P.; Souriyan, A.D.H.; Jackline, D.; Rasool, M.K. Piperine, an active ingredient of black pepper attenuates acetaminophen-induced hepatotoxicity in mice. Asian Pac. J. Trop. Med. 2010, 3, 971–976. [Google Scholar] [CrossRef]
- Sudjarwo, S.A.; Eraiko, K.; Sudjarwo, G.W.K. Koerniasari Protective effects of piperine on lead acetate induced-nephrotoxicity in rats. Iran. J. Basic Med. Sci. 2017, 20, 1227–1231. [Google Scholar]
- Verma, N.; Bal, S.; Gupta, R.; Aggarwal, N.; Yadav, A. Antioxidative effects of piperine against cadmium-induced oxidative stress in cultured human peripheral blood lymphocytes. J. Diet. Suppl. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Vijayakumar, R.S.; Nalini, N. Efficacy of piperine, an alkaloidal constituent from Piper nigrum on erythrocyte antioxidant status in high fat diet and antithyroid drug induced hyperlipidemic rats. Cell Biochem. Funct. 2006, 24, 491–498. [Google Scholar] [CrossRef]
- Elkady, A.; Tawfik, S.S. Anti-inflammatory role of piperine against rat lung tissue damage induced by gamma-rays. Int. J. Radiat. Res. 2018, 16, 75–84. [Google Scholar]
- Bae, G.-S.; Kim, M.-S.; Jung, W.-S.; Seo, S.-W.; Yun, S.-W.; Kim, S.G.; Park, R.-K.; Kim, E.-C.; Song, H.-J.; Park, S.-J. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur. J. Pharmacol. 2010, 642, 154–162. [Google Scholar] [CrossRef]
- Chen, W.S.; Jie, A.; Li, J.J.; Hong, L.; Xing, Z.B.; Li, C.Q. Piperine attenuates lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglia. Int. Immunopharmacol. 2017, 42, 44–48. [Google Scholar]
- Chuchawankul, S.; Khorana, N.; Poovorawan, Y. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. Genet. Mol. Res. 2012, 11, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.; Yu, K.; Chen, X.; Chen, H.; Hong, J.; Cheng, S.; Peng, L. Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell. Immunol. 2013, 285, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, K.; Hu, Y.; Xu, B.; Zhao, J. Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc. Int. J. Clin. Exp. Pathol. 2015, 8, 6203–6213. [Google Scholar] [PubMed]
- Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.-J.; Lim, S.-J.; Kim, J.Y.; Yang, H.-I.; Yoo, M.C.; Hahm, D.-H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther. 2009, 11, R49. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Huihui, Z.; Li, C. Piperine inhibit inflammation, alveolar bone loss and collagen fibers breakdown in a rat periodontitis model. J. Periodontal Res. 2015, 50, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Son, D.J.; Akiba, S.; Hong, J.T.; Yun, Y.P.; Hwang, S.Y.; Park, Y.H.; Lee, S.E. Piperine inhibits the activities of platelet cytosolic phospholipase A2 and thromboxane A2 synthase without affecting cyclooxygenase-1 activity: Different mechanisms of action are involved in the inhibition of platelet aggregation and macrophage inflammatory response. Nutrients 2014, 6, 3336–3352. [Google Scholar] [PubMed]
- D’cruz, S.C.; Mathur, P.P. Effect of piperine on the epididymis of adult male rats. Asian J. Androl. 2005, 7, 363–368. [Google Scholar] [CrossRef]
- Bajad, S.; Bedi, K.L.; Singla, A.K.; Johri, R.K. Piperine inhibits gastric emptying and gastrointestinal transit in rats and mice. Planta Med. 2001, 67, 176–179. [Google Scholar] [CrossRef]
- Sabina, E.P.; Nasreen, A.; Vedi, M.; Rasool, M. Analgesic, antipyretic and ulcerogenic effects of piperine: An active ingredient of pepper. J. Pharm. Sci. Res. 2013, 5, 203–206. [Google Scholar]
- Bai, Y.F.; Xu, H. Protective action of piperine against experimental gastric ulcer. Acta Pharmacol. Sin. 2000, 21, 357–359. [Google Scholar]
- Bajaj, S. Anti-mutagenic activity of piperine against food mutagens. Indian Drugs 2003, 40, 358–362. [Google Scholar]
- Wongpa, S.; Himakoun, L.; Soontornchai, S.; Temcharoen, P. Antimutagenic effects of piperine on cyclophosphamide-induced chromosome aberrations in rat bone marrow cells. Asian Pac. J. Cancer Prev. 2007, 8, 623–627. [Google Scholar] [PubMed]
- Khandelwal, S.; Pathak, N.; Singh, M. Protective role of piperine against cadmium induced hepatic and renal toxocity. Toxicol. Int. 2008, 15, 85–89. [Google Scholar]
- Abo-Zeid, M.A.M.; Farghaly, A.A. The anti-mutagenic activity of piperine against mitomycine C induced sister chromatid exchanges and chromosomal aberrations in mice. Nat. Sci. 2009, 7, 72–78. [Google Scholar]
- Reen, R.K.; Wiebel, F.J.; Singh, J. Piperine inhibits aflatoxin B1-induced cytotoxicity and genotoxicity in V79 Chinese hamster cells genetically engineered to express rat cytochrome P4502B1. J. Ethnopharmacol. 1997, 58, 165–173. [Google Scholar] [CrossRef]
- Kumar, A.; Sasmal, D.; Sharma, N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environ. Toxicol. Pharmacol. 2015, 39, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Do, M.T.; Kim, H.G.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Jeong, T.C.; Jeong, H.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem. 2013, 141, 2591–2599. [Google Scholar] [CrossRef]
- Greenshields, A.L.; Doucette, C.D.; Sutton, K.M.; Madera, L.; Annan, H.; Yaffe, P.B.; Knickle, A.F.; Dong, Z.; Hoskin, D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015, 357, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Kakarala, M.; Brenner, D.E.; Korkaya, H.; Cheng, C.; Tazi, K.; Ginestier, C.; Liu, S.; Dontu, G.; Wicha, M.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat. 2010, 122, 777–785. [Google Scholar] [CrossRef]
- Abdelhamed, S.; Yokoyama, S.; Refaat, A.; Ogura, K.; Yagita, H.; Awale, S.; Saiki, I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res. 2014, 34, 1893–1899. [Google Scholar]
- Lai, L.H.; Fu, Q.H.; Liu, Y.; Jiang, K.; Guo, Q.M.; Chen, Q.Y.; Yan, B.; Wang, Q.Q.; Shen, J.G. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 2012, 33, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, P.; Deepti, K.; Venugopal, D.V.R. Synthesis, anticancer and antibacterial activities of piperine analogs. Med. Chem. Res. 2013, 22, 5466–5471. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, J.; Liao, H.; Li, L.; Pan, L. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumour Biol. 2014, 35, 3305–3310. [Google Scholar] [CrossRef] [PubMed]
- Selvendiran, K.; Banu, S.M.; Sakthisekaran, D. Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Clin. Chim. Acta 2004, 350, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.Y.; Chang, J.P.; Wang, C.J. Modulatory effect of piperine on benzo[a]pyrene cytotoxicity and DNA adduct formation in V-79 lung fibroblast cells. Food Chem. Toxicol. 1994, 32, 373–377. [Google Scholar] [CrossRef]
- Selvendiran, K.; Banu, S.M.; Sakthisekaran, D. Oral supplementation of piperine leads to altered phase II enzymes and reduced DNA damage and DNA-protein cross links in Benzo(a)pyrene induced experimental lung carcinogenesis. Mol. Cell. Biochem. 2005, 268, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Selvendiran, K.; Thirunavukkarasu, C.; Singh, J.P.V.; Padmavathi, R.; Sakthisekaran, D. Chemopreventive effect of piperine on mitochondrial TCA cycle and phase-I and glutathione-metabolizing enzymes in benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice. Mol. Cell. Biochem. 2005, 271, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, C.R.; Kuttan, G. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin. Exp. Metastasis 2002, 19, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Ba, Y.; Malhotra, A. Potential of piperine in modulation of voltage-gated K+ current and its influences on cell cycle arrest and apoptosis in human prostate cancer cells. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8999–9011. [Google Scholar] [PubMed]
- Ouyang, D.; Zeng, L.; Pan, H.; Xu, L.; Wang, Y.; Liu, K.; He, X. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol. 2013, 60, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Samykutty, A.; Shetty, A.V.; Dakshinamoorthy, G.; Bartik, M.M.; Johnson, G.L.; Webb, B.; Zheng, G.; Chen, A.; Kalyanasundaram, R.; Munirathinam, G. Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS ONE 2013, 8, e65889. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yang, Y. Piperine depresses the migration progression via downregulating the Akt/mTOR/MMP-9 signaling pathway in DU145 cells. Mol. Med. Rep. 2018, 17, 6363–6370. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-Z.; Liu, H.-X.; Yang, L.-Q.; Cui, L.; Xu, Y. Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB. Biomed. Pharmacother. 2017, 96, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Yang, R.; Lin, R.; Yang, S. Piperine functions as a tumor suppressor for human ovarian tumor growth via activation of JNK/p38 MAPK-mediated intrinsic apoptotic pathway. Biosci. Rep. 2018, 38, BSR20180503. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, N.; Manoharan, S.; Palaniappan, P.R.; Venkatachalam, P.; Manohar, M.G.A. Chemopreventive efficacy of piperine in 7,12-dimethyl benz [a] anthracene (DMBA)-induced hamster buccal pouch carcinogenesis: An FT-IR study. Food Chem. Toxicol. 2009, 47, 2813–2820. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.A.; Lee, H.N.; Choo, G.S.; Kim, S.J.; Kim, H.J.; Park, Y.S.; Park, B.K.; Kim, B.S.; Kim, S.K.; Lee, H.J.; et al. Induction of apoptosis and inhibition of growth in human gastric cancer by piperine. J. Korean Soc. Food Sci. Nutr. 2016, 45, 1589–1594. [Google Scholar] [CrossRef]
- Xia, Y.; Khoi, P.N.; Yoon, H.J.; Lian, S.; Joo, Y.E.; Chay, K.O.; Kim, K.K.; Jung, D.Y. Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol. Cell. Biochem. 2015, 398, 147–156. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, H.; Shin, M.; Shin, H.K.; Yoon Park, J.H. Induction of apoptosis in HT-29 human colon cancer cells by the pepper component piperine. J. Korean Soc. Food Sci. Nutr. 2009, 38, 442–450. [Google Scholar] [CrossRef]
- Yaffe, P.B.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol. Carcinog. 2015, 54, 1070–1085. [Google Scholar] [CrossRef]
- Yaffe, P.B.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Exp. Mol. Pathol. 2013, 94, 109–114. [Google Scholar] [CrossRef]
- Kaur, H.; He, B.; Zhang, C.; Rodriguez, E.; Hage, D.S.; Moreau, R. Piperine potentiates curcumin-mediated repression of mTORC1 signaling in human intestinal epithelial cells: Implications for the inhibition of protein synthesis and TNFα signaling. J. Nutr. Biochem. 2018, 57, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, C.R.; Kuttan, G. Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int. Immunopharmacol. 2004, 4, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, R.A.; Ganai, B.A.; Tasduq, S.A. Piperine promotes ultraviolet (UV)-B-induced cell death in B16F10 mouse melanoma cells through modulation of major regulators of cell survival. RSC Adv. 2015, 5, 11884–11894. [Google Scholar] [CrossRef]
- Rao, V.R.S.; Suresh, G.; Rao, R.R.; Babu, K.S.; Chashoo, G.; Saxena, A.K.; Rao, J.M. Synthesis of piperine-amino acid ester conjugates and study of their cytotoxic activities against human cancer cell lines. Med. Chem. Res. 2012, 21, 38–46. [Google Scholar]
- Huang, W.; Chen, Z.; Wang, Q.; Lin, M.; Wu, S.; Yan, Q.; Wu, F.; Yu, X.; Xie, X.; Li, G.; et al. Piperine potentiates the antidepressant-like effect of trans-resveratrol: Involvement of monoaminergic system. Metab. Brain Dis. 2013, 28, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Hong, S.S.; Han, X.H.; Hwang, J.S.; Oh, G.J.; Lee, K.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem. Pharm. Bull. 2005, 53, 832–835. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Hwang, J.S.; Han, X.H.; Lee, C.; Lee, M.H.; Choe, S.G.; Hong, S.S.; Lee, D.; Lee, M.K.; Hwang, B.Y. Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch. Pharm. Res. 2008, 31, 679–683. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Li, W.; Koike, K.; Nikaido, T.; Wang, M.-W. Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J. Asian Nat. Prod. Res. 2007, 9, 421–430. [Google Scholar] [CrossRef]
- Mu, L.-H.; Wang, B.; Ren, H.-Y.; Liu, P.; Guo, D.-H.; Wang, F.-M.; Bai, L.; Guo, Y.-S. Synthesis and inhibitory effect of piperine derivates on monoamine oxidase. Bioorg. Med. Chem. Lett. 2012, 22, 3343–3348. [Google Scholar] [CrossRef]
- Li, G.; Ruan, L.; Chen, R.; Wang, R.; Xie, X.; Zhang, M.; Chen, L.; Yan, Q.; Reed, M.; Chen, J.; et al. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: Involvement of monoaminergic system. Metab. Brain Dis. 2015, 30, 1505–1514. [Google Scholar] [CrossRef]
- Dalvi, R.R.; Dalvi, P.S. Comparison of the effects of piperine administered intragastrically and intraperitoneally on the liver and liver mixed-function oxidases in rats. Drug Metab. Drug Interact. 1991, 9, 23–30. [Google Scholar] [CrossRef]
- Beltrán, L.R.; Dawid, C.; Beltrán, M.; Gisselmann, G.; Degenhardt, K.; Mathie, K.; Hofmann, T.; Hatt, H. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK. Front. Pharmacol. 2013, 4, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-Y.; Li, W.; Qu, K.-P.; Chen, C.-R. Piperine exerts anti-seizure effects via the TRPV1 receptor in mice. Eur. J. Pharmacol. 2013, 714, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ge, F.; Liu, J.; Bao, S.; Chen, Y.; Li, D.; Li, Y.; Huang, T.; Chen, X.; Zhu, Q.; et al. Diverged effects of piperine on testicular development: Stimulating leydig cell development but inhibiting spermatogenesis in rats. Front. Pharmacol. 2018, 9, 244. [Google Scholar] [CrossRef]
- Gilhotra, N.; Dhingra, D. Possible involvement of GABAergic and nitriergic systems for antianxiety-like activity of piperine in unstressed and stressed mice. Pharmacol. Rep. 2014, 66, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.H.; Won, S.M.; Park, S.S.; Kim, S.G.; Novak, R.F.; Kim, N.D. Piperine effects on the expression of p4502e1, p4502b and p4501a in rat. Xenobiotica 1994, 24, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Pour Nasrollah, M.; Rezaei, M.; Jorsaraei, G.; Maliji, G.; Kazemi, S.; Zabihi, E.; Pouramir, M.; Moghadamnia, A.A. Effect of piperine pretreatment on biochemical profiles of acetaminophen-induced hepatotoxicity in rats. JBUMS 2012, 14, 7–14. [Google Scholar]
- Khajuria, A.; Thusu, N.; Yutshi, U.; Bedi, K.L. Antioxidant potential of piperine on oxidant induced alterations in rat intestinal lumen. Indian Drugs 1997, 34, 557–563. [Google Scholar]
- Kim, D.-Y.; Kim, E.-J.; Jang, W.-G. Piperine induces osteoblast differentiation through AMPK-dependent Runx2 expression. Biochem. Biophys. Res. Commun. 2018, 495, 1497–1502. [Google Scholar] [CrossRef]
- Kim, H.G.; Han, E.H.; Jang, W.-S.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Chung, Y.C.; Jeong, H.G. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem. Toxicol. 2012, 50, 2342–2348. [Google Scholar] [CrossRef]
- Mao, K.; Lei, D.; Zhang, H.; You, C. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy. Exp. Ther. Med. 2017, 13, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Kar, A. Piperine lowers the serum concentrations of thyroid hormones, glucose and hepatic 5’D activity in adult male mice. Horm. Metab. Res. 2003, 35, 523–526. [Google Scholar] [PubMed]
- Sethi, K.K.; Sahoo, S.K.; Pichikala, J.N.; Suresh, P. Carbonic anhydrase I and II inhibition with natural products: Caffeine and piperine. J. Enzym. Inhib. Med. Chem. 2012, 27, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.-M.; Kim, S.-M.; Park, T.-K.; Li, G.; Hong, S.-J.; Park, R.; Chung, H.-T.; Kim, B.-R. Piperine protects cisplatin-induced apoptosis via heme oxygenase-1 induction in auditory cells. J. Nutr. Biochem. 2007, 18, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Choi, Y.; Choi, Y.; Kim, S.; Jang, J.; Park, T. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem. 2013, 141, 3627–3635. [Google Scholar] [CrossRef] [PubMed]
- Deepak, V.; Kruger, M.C.; Joubert, A.; Coetzee, M. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis. Biofactors 2015, 41, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Doucette, C.D.; Greenshields, A.L.; Liwski, R.S.; Hoskin, D.W. Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways. Toxicol. Lett. 2015, 234, 1–12. [Google Scholar] [CrossRef]
- Doucette, C.D.; Hilchie, A.L.; Liwski, R.; Hoskin, D.W. Piperine, a dietary phytochemical, inhibits angiogenesis. J. Nutr. Biochem. 2013, 24, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doucette, C.D.; Rodgers, G.; Liwski, R.S.; Hoskin, D.W. Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes. J. Cell. Biochem. 2015, 116, 2577–2588. [Google Scholar] [CrossRef]
- Hou, X.-F.; Pan, H.; Xu, L.-H.; Zha, Q.-B.; He, X.-H.; Ouyang, D.-Y. piperine suppresses the expression of CXCL8 in lipopolysaccharide-activated SW480 and HT-29 cells via downregulating the mitogen-activated protein kinase pathways. Inflammation 2015, 38, 1093–1102. [Google Scholar] [CrossRef]
- Kim, N.; Nam, M.; Kang, M.S.; Lee, J.O.; Lee, Y.W.; Hwang, G.S.; Kim, H.S. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells. Sci. Rep. 2017, 7, 41066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Singhal, V.; Roshan, R.; Sharma, A.; Rembhotkar, G.W.; Ghosh, B. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur. J. Pharmacol. 2007, 575, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Lee, K.; Park, W.-H.; Kim, H.; Hong, H. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells. J. Med. Food 2015, 18, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Liang, Z. Piperine alleviates lipopolysaccharide-induced inflammatory injury by down-regulating microRNA-127 in murine chondrogenic ATDC5 cells. Biomed. Pharmacother. 2018, 103, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-G.; Yuan, Y.-P.; Zhang, X.; Xu, S.-C.; Wang, S.-S.; Tang, Q.-Z. Piperine attenuates pathological cardiac fibrosis via PPAR-γ/AKT pathways. EBioMedicine 2017, 18, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.; Shirao, T.; Shirasaya, D.; Yoshioka, Y.; Yamashita, Y.; Akagawa, M.; Ashida, H. Piperine promotes glucose uptake through ROS-dependent activation of the CAMKK/AMPK signaling pathway in skeletal muscle. Mol. Nutr. Food Res. 2018, 62, e1800086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, X.; Li, H.; Li, B.; Sun, L.; Xie, T.; Zhu, T.; Zhou, H.; Ye, Z. Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression. Int. Immunopharmacol. 2015, 24, 50–58. [Google Scholar] [CrossRef]
- Gong, F.; Cui, L.; Zhang, X.; Zhan, X.; Gong, X.; Wen, Y. Piperine ameliorates collagenase-induced Achilles tendon injury in the rat. Connect. Tissue Res. 2018, 59, 21–29. [Google Scholar] [CrossRef]
- Liu, J.; Chen, M.; Wang, X.; Wang, Y.; Duan, C.; Gao, G.; Lu, L.; Wu, X.; Wang, X.; Yang, H. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson’s disease model. Oncotarget 2016, 7, 60823–60843. [Google Scholar]
- Mao, Q.-Q.; Huang, Z.; Ip, S.-P.; Xian, Y.-F.; Che, C.-T. Protective effects of piperine against corticosterone-induced neurotoxicity in PC12 cells. Cell. Mol. Neurobiol. 2012, 32, 531–537. [Google Scholar] [CrossRef]
- Singh, S.; Jamwal, S.; Kumar, P. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen. Res. 2017, 12, 1137–1144. [Google Scholar] [PubMed]
- Fu, M.; Sun, Z.-H.; Zuo, H.-C. Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol. Pharm. Bull. 2010, 33, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Unchern, S.; Nagata, K.; Saito, H.; Fukuda, J. Reduction of neurite extension by piperine, examined on hippocampal and septal neurons in serum-free cultures. Biol. Pharm. Bull. 1994, 17, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Khalili-Fomeshi, M.; Azizi, M.G.; Esmaeili, M.R.; Gol, M.; Kazemi, S.; Ashrafpour, M.; Moghadamnia, A.A.; Hosseinzadeh, S. Piperine restores streptozotocin-induced cognitive impairments: Insights into oxidative balance in cerebrospinal fluid and hippocampus. Behav. Brain Res. 2018, 337, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liao, H.; Liu, P.; Guo, D.; Wang, Y. Antidepressant effects of piperine and its neuroprotective mechanism in rats. Zhong Xi Yi Jie He Xue Bao 2009, 7, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, I.A.; Pivac, N.; Alhumayyd, M.S.; Mahesar, A.L.; Gilani, A.H. The analgesic and anticonvulsant effects of piperine in mice. J. Physiol. Pharmacol. 2013, 64, 789–794. [Google Scholar] [PubMed]
- Piyachaturawat, P.; Glinsukon, T.; Toskulkao, C. Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol. Lett. 1983, 16, 351–359. [Google Scholar] [CrossRef]
- Rao, P.J.; Kolla, S.D.; Elshaari, F.; Elshaari, F.; Awamy, H.E.l.; Elfrady, M.; Singh, R.; Belkhier, A.; Srikumar, S.; Said, A.R.; et al. Effect of piperine on liver function of CF-1 albino mice. Infect. Disord. Drug Targets 2015, 15, 131–134. [Google Scholar] [CrossRef]
- Allameh, A.; Saxena, M.; Biswas, G.; Raj, H.G.; Singh, J.; Srivastava, N. Piperine, a plant alkaloid of the piper species, enhances the bioavailability of aflatoxin B1 in rat tissues. Cancer Lett. 1992, 61, 195–199. [Google Scholar] [CrossRef]
- Malini, T.; Manimaran, R.R.; Arunakaran, J.; Aruldhas, M.M.; Govindarajulu, P. Effects of piperine on testis of albino rats. J. Ethnopharmacol. 1999, 64, 219–225. [Google Scholar] [CrossRef]
- Aldaly, Z.T.K. Antimicrobial activity of piperine purified from Piper nigrum. J. Basrah Res. 2010, 36, 54–61. [Google Scholar]
- Hikal, D.M. Antibacterial activity of piperine and black pepper oil. Biosci. Biotechnol. Res. Asia 2018, 15, 877–880. [Google Scholar] [CrossRef]
- Maitra, J. Synergistic effect of piperine, extracted from Piper nigrum, with ciprofloxacin on Escherichia coli, Bacillus subtilis. Pharm. Sin. 2017, 8, 29–34. [Google Scholar]
- Jin, J.; Zhang, J.; Guo, N.; Feng, H.; Li, L.; Liang, J.; Sun, K.; Wu, X.; Wang, X.; Liu, M.; et al. The plant alkaloid piperine as a potential inhibitor of ethidium bromide efflux in Mycobacterium smegmatis. J. Med. Microbiol. 2011, 60, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Amperayani, K.R.; Kumar, K.N.; Parimi, U.D. Synthesis and in vitro and in silico antimicrobial studies of novel piperine–pyridine analogs. Res. Chem. Intermed. 2018, 44, 3549–3564. [Google Scholar] [CrossRef]
- Hugas, M.; Garriga, M.; Pascual, M.; Aymerich, M.T.; Monfort, J.M. Enhancement of sakacin K activity against Listeria monocytogenes in fermented sausages with pepper or manganese as ingredients. Food Microbiol. 2002, 19, 519–528. [Google Scholar] [CrossRef]
- Masatcioğlu, T.M.; Avşar, Y.K. Effects of flavorings, storage conditions, and storage time on survival of Staphylococcus aureus in Sürk cheese. J. Food Prot. 2005, 68, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Cilla, I.; Antonio Beltrán, J.; Roncalés, P. Effect of Capsicum annuum (red sweet and cayenne) and Piper nigrum (black and white) pepper powders on the shelf life of fresh pork sausages packaged in modified atmosphere. J. Food Sci. 2006, 71, 48–53. [Google Scholar] [CrossRef]
- Krumov, K.; Ivanov, G.; Slavchev, A.; Nenov, N. Improving the processed cheese quality by the addition of natural spice extracts. Adv. J. Food Sci. Technol. 2010, 2, 335–339. [Google Scholar]
- Agbabiaka, L.A.; Kuforiji, O.A.; Ndumnigwe, O.E. Storage and microbial evaluation of black pepper pre-treated oven-dried moon fish (Citharinus citharus Geoffery Saint-Hilaire 1809). J. Aquac. Res. Dev. 2016, 7. [Google Scholar] [CrossRef]
- Martínez, L.; Cilla, I.; Beltrán, J.A.; Roncalés, P. Effect of illumination on the display life of fresh pork sausages packaged in modified atmosphere. Influence of the addition of rosemary, ascorbic acid and black pepper. Meat Sci. 2007, 75, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, I.P.S.; Singh, B.; Singh, S.; Singh, G. Essential oil and oleoresins of black pepper as natural food preservatives for orange juice. J. Food Process. Preserv. 2014, 38, 146–152. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Pan, D.-D.; Cao, J.-X.; Shao, X.-F.; Chen, Y.-J.; Sun, Y.-Y.; Ou, C.-R. Effect of black pepper essential oil on the quality of fresh pork during storage. Meat Sci. 2016, 117, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Alencar Filho, E.B.; Castro Silva, J.W. A quantitative structure-activity relationships (QSAR) study of piperine based derivatives with leishmanicidal activity. Electron. J. Chem. 2017, 9, 43–49. [Google Scholar] [CrossRef]
- Kapil, A. Piperine: A potent inhibitor of Leishmania donovani promastigotes in vitro. Planta Med. 1993, 59, 474. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Soares, D.C.; Barreto-Junior, C.B.; Nascimento, M.T.; Freire-de-Lima, L.; Delorenzi, J.C.; Lima, M.E.F.; Atella, G.C.; Folly, E.; Carvalho, T.M.U.; et al. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry 2011, 72, 2155–2164. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.S.; Freire-de-Lima, L.; Previato, J.O.; Mendonça-Previato, L.; Heise, N.; de Lima, M.E.F. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 2004, 14, 3555–3558. [Google Scholar] [CrossRef] [PubMed]
- Badmaev, V.; Majeed, M.; Prakash, L. Piperine derived from black pepper increases the plasma levels of coenzyme Q10 following oral supplementation. J. Nutr. Biochem. 2000, 11, 109–113. [Google Scholar] [CrossRef]
- Balkrishna, B.; Yogesh, P.V. Influence of co-administration of piperine on pharmacokinetic profile of ciprofloxacin. Indian Drugs 2002, 39, 166–168. [Google Scholar]
- Barve, K.; Ruparel, K. Effect of bioenhancers on amoxicillin bioavailability. ADMET DMPK 2015, 3, 45–50. [Google Scholar] [CrossRef]
- Basu, S.; Jana, S.; Patel, V.B.; Patel, H. Effects of piperine, cinnamic acid and gallic acid on rosuvastatin pharmacokinetics in rats. Phytother. Res. 2013, 27, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Boddupalli, B.M.; Anisetti, R.N.; Ramani, R.; Malothu, N. Enhanced pharmacokinetics of omeprazole when formulated as gastroretentive microspheres along with piperine. Asian Pac. J. Trop. Dis. 2014, 4, S129–S133. [Google Scholar] [CrossRef]
- Chen, X.Y.; Yang, G.H.; Li, C.L.; Yu, X.T.; Wang, X.F.; Zheng, Y.F.; Xie, J.H.; Lai, X.P.; Su, Z.R.; Liang, Y.Z.; et al. Pharmacokinetic interaction between magnolol and piperine in rats. Trop. J. Pharm. Res. 2016, 15, 631–638. [Google Scholar] [CrossRef]
- Janakiraman, K.; Manavalan, R. Studies on effect of piperine on oral bioavailability of ampicillin and norfloxacin. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Bano, G.; Raina, R.K.; Zutshi, U.; Bedi, K.L.; Johri, R.K.; Sharma, S.C. Effect of piperine on bioavailability and pharmacokinetics of propranolol and theophylline in healthy volunteers. Eur. J. Clin. Pharmacol. 1991, 41, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Settembre, R. Safety and efficacy of an add-on therapy with curcumin phytosome and piperine and/or lipoic acid in subjects with a diagnosis of peripheral neuropathy treated with dexibuprofen. J. Pain Res. 2013, 6, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaee, M.M.; Kazemi, S.; Kazemi, M.T.; Gharooee, S.; Yazdani, E.; Gharooee, H.; Shiran, M.R.; Moghadamnia, A.A. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. DARU J. Pharm. Sci. 2014, 22, 8. [Google Scholar] [CrossRef]
- Kasibhatta, R.; Naidu, M.U.R. Influence of piperine on the pharmacokinetics of nevirapine under fasting conditions: A randomised, crossover, placebo-controlled study. Drugs R D 2007, 8, 383–391. [Google Scholar] [CrossRef]
- Atal, C.K.; Zutshi, U.; Rao, P.G. Scientific evidence on the role of Ayurvedic herbals on bioavailability of drug. J. Ethnopharmacol. 1981, 4, 229–232. [Google Scholar] [CrossRef]
- Hussaarts, K.G.A.M.; Hurkmans, D.P.; Oomen-De Hoop, E.; van Harten, L.J.; Berghuis, S.; van Alphen, R.J.; Spierings, L.E.A.; van Rossum-Schornagel, Q.C.; Vastbinder, M.B.; van Schaik, R.H.N.; et al. Impact of curcumin (with or without piperine) on the pharmacokinetics of tamoxifen. Cancers 2019, 11, 403. [Google Scholar] [CrossRef]
- Bano, G.; Amla, V.; Raina, R.K.; Zutshi, U.; Chopra, C.L. The effect of piperine on pharmacokinetics of phenytoin in healthy volunteers. Planta Med. 1987, 53, 568–569. [Google Scholar] [CrossRef] [PubMed]
- Velpandian, T.; Jasuja, R.; Bhardwaj, R.K.; Jaiswal, J.; Gupta, S.K. Piperine in food: Interference in the pharmacokinetics of phenytoin. Eur. J. Drug Metab. Pharmacokinet. 2001, 26, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Pattanaik, S.; Hota, D.; Prabhakar, S.; Kharbanda, P.; Pandhi, P. Effect of piperine on the steady-state pharmacokinetics of phenytoin in patients with epilepsy. Phytother. Res. 2006, 20, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.; Patel, S.; Patel, K. Role of Risorine in the treatment of drug susceptible pulmonary tuberculosis: A pilot study. J. Assoc. Physicians India 2016, 64, 20–24. [Google Scholar] [PubMed]
- Patel, N.; Jagannath, K.; Vora, A.; Patel, M.; Patel, A. A randomized, controlled, phase III clinical trial to evaluate the efficacy and tolerability of Risorine with conventional rifampicin in the treatment of newly diagnosed pulmonary tuberculosis patients. J. Assoc. Physicians India 2017, 65, 48–54. [Google Scholar] [PubMed]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Antony, B.; Merina, B.; Iyer, V.S.; Judy, N.; Lennertz, K.; Joyal, S. a pilot cross-over study to evaluate human oral bioavailability of BCM-95®CG (Biocurcumax™), a novel bioenhanced preparation of curcumin. Indian J. Pharm. Sci. 2008, 70, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Badmaev, V.; Majeed, M.; Norkus, E. Piperine, an alkaloid derived from black pepper increases serum response of beta-carotene during 14-days of oral beta-carotene supplementation. Nutr. Res. 1999, 19, 381–388. [Google Scholar] [CrossRef]
- Cherniakov, I.; Izgelov, D.; Barasch, D.; Davidson, E.; Domb, A.J.; Hoffman, A. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J. Control. Release 2017, 266, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Wang, X.; Di, X.; Liu, Y. Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats. J. Pharm. Biomed. Anal. 2015, 115, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Liu, Y.; Wang, X.; Di, X. Effects of piperine on the intestinal permeability and pharmacokinetics of linarin in rats. Molecules 2014, 19, 5624–5633. [Google Scholar] [CrossRef]
- Hiwale, A.R.; Dhuley, J.N.; Naik, S.R. Effect of co-administration of piperine on pharmacokinetics of β-lactam antibiotics in rats. Indian J. Exp. Biol. 2002, 40, 277–281. [Google Scholar] [PubMed]
- Jin, M.-J.; Han, H.-K. Effect of piperine, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food-drug interaction. J. Food Sci. 2010, 75, H93–H96. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.-H.; Qiu, W.; Liu, H.; Jiang, X.-H.; Wang, L. Enhancement of oral bioavailability and immune response of Ginsenoside Rh2 by co-administration with piperine. Chin. J. Nat. Med. 2018, 16, 143–149. [Google Scholar] [CrossRef]
- Lambert, J.D.; Hong, J.; Kim, D.H.; Mishin, V.M.; Yang, C.S. Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. J. Nutr. 2004, 134, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Z.; Chen, H.M.; Su, Z.Q.; Hou, S.Z.; Chen, X.Y.; Zheng, Y.F.; Li, Y.C.; Lin, J.; Zhan, J.Y.X.; Su, Z.R.; et al. White pepper and piperine have different effects on pharmacokinetics of puerarin in rats. Evid. Based Complement. Altern. Med. 2014, 2014, 796890. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, A.M.; Dhuley, J.N.; Deshmukh, V.K.; Naik, S.R. Effect of piperine on bioavailability of oxyphenylbutazone in rats. Indian Drugs 1999, 36, 123–126. [Google Scholar]
- Qiang, F.; Kang, K.-W.; Han, H.-K. Repeated dosing of piperine induced gene expression of P-glycoprotein via stimulated pregnane-X-receptor activity and altered pharmacokinetics of diltiazem in rats. Biopharm. Drug Dispos. 2012, 33, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.K.; Glaeser, H.; Becquemont, L.; Klotz, U.; Gupta, S.K.; Fromm, M.F. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 2002, 302, 645–650. [Google Scholar] [CrossRef]
- Jensen-Jarolim, E.; Gajdzik, L.; Haberl, I.; Kraft, D.; Scheiner, O.; Graf, J. Hot spices influence permeability of human intestinal epithelial monolayers. J. Nutr. 1998, 128, 577–581. [Google Scholar] [CrossRef]
- Han, Y.; Chin Tan, T.M.; Lim, L.Y. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicol. Appl. Pharmacol. 2008, 230, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Makhov, P.; Golovine, K.; Canter, D.; Kutikov, A.; Simhan, J.; Corlew, M.M.; Uzzo, R.G.; Kolenko, V.M. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity. Prostate 2012, 72, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Alhumayyd, M.S.; Bukhari, I.A.; Almotrefi, A.A. Effect of piperine, a major component of black pepper, on the pharmacokinetics of domperidone in rats. J. Physiol. Pharmacol. 2014, 65, 785–789. [Google Scholar] [PubMed]
- Pattanaik, S.; Hota, D.; Prabhakar, S.; Kharbanda, P.; Pandhi, P. Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytother. Res. 2009, 23, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Bedada, S.K.; Appani, R.; Boga, P.K. Effect of piperine on the metabolism and pharmacokinetics of carbamazepine in healthy volunteers. Drug Res. 2017, 67, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Wightman, E.L.; Reay, J.L.; Haskell, C.F.; Williamson, G.; Dew, T.P.; Kennedy, D.O. Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: A randomised, double-blind, placebo-controlled, cross-over investigation. Br. J. Nutr. 2014, 112, 203–213. [Google Scholar] [CrossRef]
- Bedada, S.K.; Boga, P.K. Effect of piperine on CYP2E1 enzyme activity of chlorzoxazone in healthy volunteers. Xenobiotica 2017, 47, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Bedada, S.K.; Boga, P.K.; Kotakonda, H.K. Study on influence of piperine treatment on the pharmacokinetics of diclofenac in healthy volunteers. Xenobiotica 2017, 47, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Bedada, S.K.; Boga, P.K. The influence of piperine on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers. Eur. J. Clin. Pharmacol. 2017, 73, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Rofes, L.; Arreola, V.; Martin, A.; Clavé, P. Effect of oral piperine on the swallow response of patients with oropharyngeal dysphagia. J. Gastroenterol. 2014, 49, 1517–1523. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, R.; Sarangal, V.; Kaur, N.; Prashar, P. Evaluation of anti-inflammatory effects of systemically administered curcumin lycopene and piperine as an adjunct to scaling and root planing: A clinical study. Ayu 2018, 38, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Hoormand, M.; Shahidi-Dadras, M.; Abadi, A. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: A clinical trial study. Phytother. Res. 2018, 32, 1812–1817. [Google Scholar] [CrossRef] [PubMed]
- Mihăilă, B.; Dinică, R.; Tatu, A.; Buzia, O. New insights in vitiligo treatments using bioactive compounds from Piper nigrum. Exp. Ther. Med. 2018, 17, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.; Corbin, K.D.; Nieman, D.C.; Swick, A.G. A randomized, controlled trial to assess short-term black pepper consumption on 24-hour energy expenditure and substrate utilization. Funct. Foods Health Dis. 2013, 3, 377–388. [Google Scholar] [CrossRef]
- Panahi, Y.; Ghanei, M.; Hajhashemi, A.; Sahebkar, A. Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: A randomized controlled trial. J. Diet. Suppl. 2016, 13, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebkar, A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin. Nutr. 2015, 34, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Donata, S.R.; Kesavan, M., Sr.; Austin, K.S.; Rajagopalan, K.; Kuttan, R. Clinical trial of certain ayurvedic medicines indicated in vitiligo. Anc. Sci. Life 1990, 9, 202–206. [Google Scholar]
- Rondanelli, M.; Opizzi, A.; Perna, S.; Faliva, M.; Solerte, S.B.; Fioravanti, M.; Klersy, C.; Edda, C.; Maddalena, P.; Luciano, S.; et al. Acute effect on satiety, resting energy expenditure, respiratory quotient, glucagon-like peptide-1, free fatty acids, and glycerol following consumption of a combination of bioactive food ingredients in overweight subjects. J. Am. Coll. Nutr. 2013, 32, 41–49. [Google Scholar] [CrossRef]
- Myers, B.M.; Smith, J.L.; Graham, D.Y. Effect of red pepper and black pepper on the stomach. Am. J. Gastroenterol. 1987, 82, 211–214. [Google Scholar] [PubMed]
- Vazquez-Olivencia, W.; Shah, P.; Pitchumoni, C.S. The effect of red and black pepper on orocecal transit time. J. Am. Coll. Nutr. 1992, 11, 228–231. [Google Scholar]
- Rose, J.E.; Behm, F.M. Inhalation of vapor from black pepper extract reduces smoking withdrawal symptoms. Drug Alcohol Depend. 1994, 34, 225–229. [Google Scholar] [CrossRef]
- Ebihara, T.; Ebihara, S.; Maruyama, M.; Kobayashi, M.; Itou, A.; Arai, H.; Sasaki, H. A randomized trial of olfactory stimulation using black pepper oil in older people with swallowing dysfunction. J. Am. Geriatr. Soc. 2006, 54, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Munakata, M.; Kobayashi, K.; Niisato-Nezu, J.; Tanaka, S.; Kakisaka, Y.; Ebihara, T.; Ebihara, S.; Haginoya, K.; Tsuchiya, S.; Onuma, A. Olfactory stimulation using black pepper oil facilitates oral feeding in pediatric patients receiving long-term enteral nutrition. Tohoku J. Exp. Med. 2008, 214, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, N.T.; Belza, A.; Jensen, M.G.; Ritz, C.; Bitz, C.; Hels, O.; Frandsen, E.; Mela, D.J.; Astrup, A. Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects. Br. J. Nutr. 2013, 109, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Lindheimer, J.B.; Loy, B.D.; O’Connor, P.J. Short-term effects of black pepper (Piper nigrum) and rosemary (Rosmarinus officinalis and Rosmarinus eriocalyx) on sustained attention and on energy and fatigue mood states in young adults with low energy. J. Med. Food 2013, 16, 765–771. [Google Scholar] [CrossRef] [PubMed]
Effect of Piperine | No of Patients/Study Design | Trial Length | Treatment, Dose and Formulation of Piperine | Ref. |
---|---|---|---|---|
Phenytoin ↓ absorption T1/2 ↑ T1/2el ↑ AUC ↑ Cmax | 5 healthy volunteers a crossover study | 7 days | single oral dose (300 mg) of phenytoin alone or multiple doses of piperine (20 mg daily for 7 days), followed by an oral dose of phenytoin. | [151] |
Phenytoin ↑ Ka ↑ AUC0-48 ↑ AUCo-∞ ↑ T1/2el | 6 healthy volunteers a crossover study | A single dose | Phenytoin single oral dose (300 mg) was given to participants 30 min following ingestion of a soup with/without black pepper (1 g/200 mL) 2 weeks washout period Interchanging of the groups | [152] |
Phenytoin ↑ AUC0-12 h, ↑ C max ↑ Ka Kel and Tmax unchanged | 2 groups of 10 patients | A single dose | Phase I: Group 1 received 150 mg of phenytoin twice daily. Group 2 received 200 mg dose of phenytoin twice daily. Phase II: 20 mg of piperine was administered along with phenytoin (150 or 200 mg). | [153] |
Propranolol and theophylline Piperine with propranolol: ↑ Cmax ↑ AUC Piperine with theophylline: ↑ Cmax, ↑ T1/2el ↑ AUC | 6 healthy male volunteers a randomized crossover study | 7 days | Phase I: Group 1 received a single oral dose of propranolol (40 mg) Group 2 received a single oral dose of theophylline (150 mg) Phase II: piperine 20 mg daily for 7 days following administration of drugs. One week was permitted as a washout period between the two treatments. | [145] |
Curcumine Concomitant administration of piperine (20 mg) produced much higher concentrations from 0.25 to 1h post drug and the increase in bioavailability of 2000%. | 10 healthy male volunteers a randomized crossover study | Four weeks | Phase I: 2 g of pure curcumin powder (4 × 500 mg) was given with 150 mL of water. Phase II: 2 g of pure curcumin powder combined with 20 mg of pure piperine powder (4 × 500 mg curcumin + 5 mg piperine each) was given with 150 mL of water. | [156] |
Curcuminoids ↓ absorption T1/2 ↑ Cmax ↑ Tmax ↑ Ke ↑ AUCo–∞ ↑ Cl/F ↑ Vz/F Piperine with lecitine formula increases curcumin bioavailibility when compared with control curcumin | 11 healthy participants a pilot, crossover study | Six weeks | Group 1 consumed 4 × 500 mg capsules of BCM-95®CG (Biocurcumax™) Group 2 consumed control curcumin Group 3 consumed equivalent doses of curcumin-lecithin-piperine formula. After wash out period of two weeks the subjects crossed-over to the other drug. | [157] |
Dexibuprofen multi-ingredient formula Lipicur containing piperine reduced neuropathic pain by more than 66% in both conditions The treatment reduced dexibuprofen use by about 40%. | 141 subjects affected by neuropathic pain open randomized control clinical study | Eight weeks | Group 1 received two tablets/day of Seractil containing dexibuprofen (400 mg/tablet) Group 2 received two tablets/ day of Seractil plus two tablets/day of Tiobec 400 containing lipoic acid, 400 mg/tablet Group 3 received two tablets/day of Seractil plus two tablets/day of Lipicur containing 400 mg lipoic acid, 400 mg curcumin phytosome and 4 mg piperine. | [146] |
tamoxifen and endoxifen Piperine and curcumine adjunctive therapy: Tamoxifen ↓ AUC0-24h (13%) Endoxifen ↓ AUC0-24h (13.5%) | 15 patients two-arm, three-period, randomized, cross-over study | January 2017–May 2018 | Cycle 1: patients received tamoxifen monotherapy Cycle 2: patients received tamoxifen + curcumin (three times daily 1.200 mg) Cycle 3: patients received tamoxifen concomitantly with curcumin and piperine (three times daily 1.200 mg and three times daily 10 mg, respectively) | [150] |
Beta-carotene ↑ AUC (60%) | a double-blind, placebo controlled, crossover study | 14 days | a daily beta-carotene dose (15 mg) either with 5 mg of piperine or placebo | [158] |
Coenzyme Q10 ↑ AUC (30%) | 12 healthy adult male subjects | 21 days | Control group: coenzyme Q10 (30 mg/capsule) + placebo, administered together in a single dose (90 mg/day), 14 day (90 mg/day) and 21-day supplementation (120 mg of Q10/day). Treatment group: coenzyme Q10 + 5 mg piperine. | [138] |
Carbamazepine Both dose groups (300 and 500 mg): ↑ AUC0–12 ↑ average Css ↑ T1/2el ↓ Kel In 500 mg dose group: ↑ Cmax ↑ T(max) | 10 patients | A single dose | Piperine (20 mg p.o.) + 300 mg or 500 mg dose of carbamazepine twice daily | [174] |
Carbamazepine ↑ AUC (47.9%) ↑ Cmax (68.7%) ↑ T1/2 (43.2%) | 12 healthy volunteers an open-label, 2 period, sequential study | 10 days | Piperine (20 mg p.o.) was administered once daily for 10 days during treatment phase. A single dose of carbamazepine 200 mg was administered during control and after treatment phases under fasting conditions. | [175] |
Nevirapine ↑ Cmax (120%) ↑ (C(last)) [AUC(t)] (167%) ↑ AUCo-∞ (170%) ↑ C(last) (146%) | 12 healthy adult males a randomised, crossover, placebo-controlled pilot study | 7 days | Piperine (20 mg) or placebo each morning for 6 days Day 7: nevirapine 200 mg + piperine 20 mg or nevirapine + placebo in a crossover fashion | [148] |
Risorine 89% of the sputum positive patients became sputum negative during the first two months of treatment. | 33 patients with pulmonary tuberculosis A pilot study | 6 months | Months 1 and 2: Daily oral therapy consisting of one capsule of Risorine, one tablet of ethambutol (800 mg) and two tablets of Pyrazinamide (750 mg each) Months 3–6: Daily oral therapy consisting of one capsule of Risorine | [154] |
Risorine treatment resulted with: Higher sputum conversion rate (93%) vs. control group (84%) at 4 weeks Higher cure rate at the end of 24 weeks (92%) vs. control group (82%) Decreased side effects (3 patients vs. 9 patients in control group). | 216 patients with tuberculosis randomized, triple-blind, parallel-group, multi-center, comparative clinical phase III study | 6 months | patients were randomized into: Control group, receiving a conventional anti-TB therapy (n = 117) or Treatment group, receiving a similar regimen + Risorine (n = 99). | [155] |
Midazolam Higher duration of sedation ↑ T1/2 ↑ Cl/F | 20 healthy volunteers A randomized, cross-over controlled study | 4 days | volunteers received oral dose of piperine (15 mg) or placebo for three days as pretreatment and midazolam (10 mg) on fourth day of study One month of clearance | [147] |
Resveratrol Increased CBF Cognitive function, mood and blood pressure were not changed. | 23 adults a randomised, double-blind, placebo-controlled trial | Three single doses | the participants received three single-dose treatments comprised of two capsules, containing either an inert placebo, 250 mg of trans-resveratrol or 250 mg of trans-resveratrol + 20 mg of piperine. | [176] |
Chlorzoxazone ↑ Cmax (157%) ↑ AUC (170%) ↑ T1/2 (144%) ↓ Kel (by 39%) ↓ Cl/F (by 81%) 6-hydrochlorzoxazone ↓ Cmax (by 46%) ↓ AUC (by 38%) ↓ T1/2 (by 51%) ↑ Kel (134%) ↓ metabolite to parent (6-OHCHZ/CHZ) ratios of Cmax, AUC, T1/2 ↑ Kel ratio of 6-OHCHZ/CHZ | 12 healthy volunteers an open-label, two period, sequential study | 10 days | A single dose of piperine (20 mg) was administered daily for 10 days during treatment phase. A single dose of chlorzoxazone 250 mg was administered during control and after treatment phases under fasting conditions. | [177] |
Diclofenac ↑ Cmax (164%) ↑ AUC (166%) ↑ T1/2 (134%) ↓ Kel (by 51%) ↓ Cl/F (by 67%) | 12 healthy volunteers the open-label, two period, sequential study | A single dose | A single dose of piperine 20 mg was administered daily for 10 days during treatment phase. A single dose of Diclofenac sodium 100 mg was administered during control and after treatment phases under fasting conditions. | [178] |
Fexofenadine ↑ Cmax (188%) ↑ AUC (168%) ↓ Cl/F (by 71%) | 12 healthy male volunteers an open-label, two-period, sequential study | A single dose | A single dose of piperine (20 mg) was administered daily for 10 days during treatment phase. A single dose of FEX (120 mg) was administered during control and after treatment phases under fasting conditions. | [179] |
Cannabinoids Effect to THC: 3-fold increase in Cmax 1.5-fold increase in AUC Effect to CBD: 4-fold increase in Cmax 2.2-fold increase in AUC | 9 healthy volunteers a two-way crossover, single administration | A single dose | Each subject received a THC-CBD (10.8 mg, 10 mg respectively) piperine (20 mg)-PNL filled capsule and an equivalent dose of the oromucosal spray Sativex® with a washout period in between treatments | [159] |
Condition/Effect of Piperine | No of Patients/Study Design | Trial Length | Treatment, Dose and Formulation of Piperine | Ref. |
---|---|---|---|---|
Vitiligo Higher repigmentation rate in piperine group at time intervals of 1, 2, and 3 months after the treatment Side effects occurred in 45% of the piperine treated patients (burning sensations on their skin areas and/or redness). Both side effects were mild and temporary. | 63 patients with facial vitiligo double-blind, placebo-controlled, randomized clinical trial | 3 months | Group 1: topical piperine solution + NB-UVB phototherapy every other day for 3 months Group 2: placebo + received NB-UVB phototherapy every other day for 3 months. Piperine solution (1%) was prepared by dissolving the piperine in a solvent mixture (dimethyl sulfoxide:isopropyl alcohol:glycerol; 20:20:60; %w/v) | [182] |
Vitiligo The extract caused faster and more remarkable results than the pure piperine. The association of the travoprost solution speed up the process and changed the pigmentation pattern, especially when associated with the PN extract. the mild side effects and the reduced amount of time needed for repigmentation. | 3 human subjects with vitiligo | 3 months | Piper nigrum extract (PN) and pure piperine were integrated in two different ointments. Each subject treated 9 areas: 3 using the extract, 3 using pure piperine, 1 using travoprost solution 40 µg/mL, and 2 using an association of travoprost (prostaglandin F2α analogue) solution and our products. The ointments were applied once a day, in the evening. | [183] |
Swallow response Piperine improved the safety of swallow by: 1. reducing the prevalence of unsafe swallows (by 34.48%) at 150 μM and by 57.19% at 1 mM, and the severity score of the penetration-aspiration scale from 3.25 to 1.85; 2. shortening the time to laryngeal vestibule closure from 0.366 to 0.270 s with 150 μM piperine and from 0.380 to 0.306 s with 1 mM piperine | 40 dysphagic patients randomized, double-blind, interventional, controlled study, with a pre- and post-treatment design | 1 month | Group 1 received 150 μM of piperine Group 2 received 1 mM of piperine | [180] |
Satiety and thermogenesis The supplemented group experienced a significantly greater increase in in their sensation of satiety and resting energy expenditure | 37 overweight adults a randomized double-blind placebo-controlled trial | A single dose | Each subject received two capsules of a dietary supplement (capsaicinoids, epigallocatechin gallate, piperin, and l-carnitine) or a placebo that was identical in appearance. After the meal, satiety, resting energy expenditure (REE), respiratory quotient, glucagon-like peptide-1 (GLP-1), free fatty acids (FFA) and glycerol release were measured. | [184] |
Gingivitis The group receiving antioxidant therapy showed higher reduction of the plaque index, gingival index and probing pocket depth | 60 participants with chronic generalized gingivitis a randomized control clinical study | 3 weeks | Group I—350 mg/day antioxidant therapy (curcumin 300 mg + piperine 5 mg + lycopene 10 mg) along with SRP twice a day Group II—SRP alone | [181] |
Systemic oxidative stress and accompanying symptoms a greater effect of curcuminoids-piperine combination compared to placebo in elevating GSH, reducing MDA and improving CAT and SGRQ (total and subscale) scores | 89 subjects a randomized double-blind placebo-controlled trial | 4 weeks | subjects were randomly allocated to either curcuminoids (1500 mg/day) + piperine (15 mg/day) combination or placebo. | [185] |
Metabolic syndrome Supplementation with curcuminoid-piperine combination significantly improved serum SOD activities and reduced MDA and CRP concentrations compared with placebo. | 117 subjects with MetS, a randomized double-blind placebo-controlled trial | 8 weeks | Group 1—a daily dose of curcuminoids (1 g) supplemented with piperine (10 mg) Group 2—placebo | [186] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; V. Anil Kumar, N.; Salehi, B.; C. Cho, W.; Sharifi-Rad, J. Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. Appl. Sci. 2019, 9, 4270. https://doi.org/10.3390/app9204270
Stojanović-Radić Z, Pejčić M, Dimitrijević M, Aleksić A, V. Anil Kumar N, Salehi B, C. Cho W, Sharifi-Rad J. Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. Applied Sciences. 2019; 9(20):4270. https://doi.org/10.3390/app9204270
Chicago/Turabian StyleStojanović-Radić, Zorica, Milica Pejčić, Marina Dimitrijević, Ana Aleksić, Nanjangud V. Anil Kumar, Bahare Salehi, William C. Cho, and Javad Sharifi-Rad. 2019. "Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies" Applied Sciences 9, no. 20: 4270. https://doi.org/10.3390/app9204270
APA StyleStojanović-Radić, Z., Pejčić, M., Dimitrijević, M., Aleksić, A., V. Anil Kumar, N., Salehi, B., C. Cho, W., & Sharifi-Rad, J. (2019). Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. Applied Sciences, 9(20), 4270. https://doi.org/10.3390/app9204270