A Review on Bitumen Rejuvenation: Mechanisms, Materials, Methods and Perspectives
Abstract
:1. Introduction to Bitumen and Ageing
2. Methods for Bitumen Characterizations
3. Mechanisms of Ageing and Rejuvenating
3.1. Ageing
- Oxidative, due to changes in composition through a reaction between bitumen constituents and atmospheric oxygen;
- Evaporative, due to the evaporation of low-molecular weight components in the maltene. These compounds have higher vapor pressure and are somehow volatile so they can escape the maltene phase causing not only a change of its composition, but also an overall reduction of its amount in the bitumen;
- Structural ageing, by a chemical reaction between molecular components causing polymerization with consequent formation of a structure within the bitumen (thixotropy) [33].
3.2. Rejuvenation
- Softening (usually called fluxing) agent: flux oil, lube stock, slurry oil, etc. can lower the viscosity of the aged binder;
- Real rejuvenator: it helps to restore the physical and chemical properties [33].
- They should have a high proportion of aromatics, which are necessary to keep the asphaltenes dispersed;
- They should contain a low content of saturates, which are highly incompatible with the asphaltenes.
3.2.1. Down to the Nano-Scale
3.2.2. Distinguishing Softening Agents and Real Rejuvenators
4. The State-Of-The-Art
4.1. General Requirements
4.2. Rejuvenation Probed by IR
4.3. Thermal Stability Helps in Probing Rejuvenation
4.4. Rejuvenation May Be Uncorrelated with IR Functional Groups: Need of Chromatography
4.5. Images Techniques as Useful Complementary Tools
5. Perspectives
5.1. Improving Rejuvenators Characteristics
5.2. New/Novel Rejuvenators
6. Forefront/Vanguard Techniques Facing Complexity in Bitumen
6.1. Complexity
6.2. Probing Complexity
6.2.1. Scattering Theory
- (i)
- neutron scattering arises through (short-range) nuclear interactions (or magnetically, if atoms have unpaired electron spins), while the scattering length depends on the nature of the nuclei of the reference atoms.
- (ii)
- X-rays scattering comes from the interactions among all the electrons in the material under investigation. In this case, the scattering density can be traced back to the electron density.
- (iii)
- In the case of Light photons, which have lower energy than X-rays ones, are scattered only by the outer part of the electronic cloud of an atom. In this case, the scattering length density is proportional to the polarizability of the materials.
6.2.2. Scattering of Neutrons (SANS), X-rays (SAXS) and Light
- (i)
- a polydispersion of the value of the interatomic distance represented by the peak. The intrinsically-disordered nature of the system (fluid) gives a peak broadening whose width gives the distance polydispersion. The order is partially lost at any distance.
- (ii)
- Reduced size of the domain. The band broadening is due to the fact that the specific interatomic distance is only help at a certain length, called the correlation length. The order is lost beyond this length. The scattering domain size can be derived by the full width at half maximum (FWHM) of the band through the Debye-Sherrer formula:
6.2.3. Applications of Scattering Techniques to Bitumen
- A prominent broad band centered around 1.3 Å−1 dominates the spectrum;
- A weak and broad band around 3 Å−1;
- There is a tiny, but sharp, peak around 0.5 Å−1, not always present;
- The fitting procedure will also help in analyzing the weaker band at higher angles (around 2.9 Å−1 and which is a characteristic distance d of about 2.2 Å) which is sometimes partially overlapped;
- The fitting allows to derive, from each curve, also the Full Width at Half Maximum (FWHM)
6.2.4. Relaxometry Nuclear Magnetic Resonance Theory
6.2.5. Applications of Relaxometry Nuclear Magnetic Resonance to Bitumen
7. Concluding Remarks
- Many materials are used for rejuvenating bitumen by lowering viscosity and stiffness. Since different physico-chemical mechanisms are involved in bitumen ageing (oxidation, evaporation, structural changes), different mechanisms of actions can be consequently exerted by the various rejuvenators (softening/fluxing, restoration of the pristine structure/properties). The distinction of the various mechanisms has been highlighted. These aspects have been shown in Section 1, Section 2 and Section 3.
- The state-of-the-art constituted by the works carried out by several researchers in this field has been shown. Low-cost oils are generally added to increase the maltene fraction, but it should be noticed that an additive having complete rejuvenating function should also induce a reorganization of the chemical structure of asphaltenes and their assemblies. The restoring of the aged bitumen structure to the original conditions is not trivial, due to its complex organization at the supra-molecular scale. This has been extensively shown in Section 4.
- Taking into account the complex chemistry involved in the bitumen rejuvenation, the additive performances can be improved by chemical manipulation/modification (paragraph 5.1). Some perspectives have been also presented (Section 5.2) considering for the complexity of the systems and suggesting the use of amphiphilic species as promising rejuvenator thanks to their simultaneous presence, within their molecular architecture of both polar and apolar moieties which permits their simultaneous interactions with polar (asphaltene clusters), apolar (maltene) and amphiphilic (resins) species of the bitumen.
- Scattering techniques and nuclear magnetic relaxometry have been presented as vanguard and promising techniques deserving attention for deeper analyses in bitumen. In fact, they can probe the effectiveness of a rejuvenator in restoring the microstructure of bitumen after the aging process, whereas, mechanical properties, on their own, are not enough for investigating this aspect. A clear introduction to the physics of the techniques and applications to the study of bitumen has been presented.
- With this work, we would like to share with the reader our belief that the detailed analysis of the physics of bitumen at the molecular basis extends the information taken from the commonly used empirical and quick tools. This allows to better understand the phenomena taking place in bitumen furnishing new tools for the piloted design of new and ever-performing rejuvenators.
- We wanted to furnish a novel viewpoint for the study of bitumen based on the concepts of the complex systems in physics. According to this approach, the final behavior of the material is not only dictated by specific interactions, as usually assumed in most of the research papers, but also by collective contributions of many molecules interacting and aggregating themselves usually at different length scales in hierarchical structures generating emerging properties. We hope that this study can constitute a novel approach for the investigation of bitumen, and the improvements of its performances.
Author Contributions
Funding
Conflicts of Interest
References
- Calandra, P.; Caputo, P.; De Santo, M.P.; Todaro, L.; Turco Liveri, V.; Oliviero Rossi, C. Effect of additives on the structural organization of asphaltene aggregates in bitumen. Constr. Build. Mater. 2019, 199, 288–297. [Google Scholar] [CrossRef]
- Rozeveld, S.; Shin, E.; Bhurke, A.; France, L.; Drzal, L. Network morphology of straight and polymer modified asphalt cements. Microsc. Res. Technol. 1997, 38, 529–543. [Google Scholar] [CrossRef]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.C. Chemical composition of asphalt as related to asphalt durability: State of the art Transport. Transp. Res. Rec. 1984, 999, 13–30. [Google Scholar]
- Yu, X.; Zaumanis, M.; dos Santos, S.; Poulikakos, L.D. Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 2014, 135, 162–171. [Google Scholar] [CrossRef]
- Copeland, A. Reclaimed asphalt pavement in asphalt mixtures: State of the practice. In Report No. FHWA-HRT-11-021; Federal Highway Administratio: McLean, WV, USA, 2011. [Google Scholar]
- Firoozifar, H.; Foroutan, S.; Foroutan, S. The effect of asphaltene on thermal properties of bitumen. Chem. Eng. Res. Des. 2011, 89, 2044–2048. [Google Scholar] [CrossRef]
- Filippelli, L.; Gentile, L.; Oliviero Rossi, C.; Ranieri, G.A.; Antunes, F.E. Structural change of bitumen in the recycling process by using rheology and NMR. Indus. Eng. Chem. Res. 2012, 51, 16346–16353. [Google Scholar] [CrossRef]
- Gentile, L.; Filippelli, L.; Oliviero Rossi, C.; Baldino, N.; Ranieri, G.A. Rheological and H-NMR spin–spin relaxation time for the evaluation of the effects of PPA addition on bitumen. Mol. Cryst. Liq. Cryst. 2012, 558, 54–63. [Google Scholar] [CrossRef]
- Yoon, S.; Durgashanker Bhatt, S.; Lee, W.; Lee, H.Y.; Jeong, S.Y.; Baeg, J.O.; Wee Lee, C. Separation and characterization of bitumen from Athabasca oil sand. Korean J. Chem. Eng. 2009, 26, 64–71. [Google Scholar] [CrossRef]
- Altgelt, K.H.; Boduszynski, M.M. Compositional Analysis: Dream and Reality. In Composition and Analysis of Heavy Petroleum Fractions; Marcel Dekker: New York, NY, USA, 1994; pp. 9–39. [Google Scholar]
- Zenke, G. Zum Löseverhalten von “Asphaltenen”: Anwendung von Löslichkeitsparameter-Konzepten auf Kolloidfraktionen Schwerer Erdöl Produkte. Ph.D. Thesis, Technical University of Clausthal, German State, Germany, 1989. [Google Scholar]
- Hurley, G.C.; Prowell, B.D. Evaluation of potential processes for use in warm mix asphalt. J. Assoc. Asph. Paving Technol. 2006, 75, 41–90. [Google Scholar]
- Silva, H.M.R.D.; Oliveira, J.R.M.; Ferreira, C.I.G.; Pereira, P.A.A. Assessment of the performance of warm mix asphalts in road pavements. Int. J. Pavement Res. Technol. 2010, 3, 119–127. [Google Scholar]
- Hakseo, K.; Soon-Jae, L. Rheology of warm mix asphalt binders with aged binders. Constr. Build. Mater. 2011, 25, 183–189. [Google Scholar]
- Jamshidia, A.; Hamzaha, M.O. Performance of warm mix asphalt containing Sasobit®: State of the art. Constr. Build. Mater. 2013, 38, 530–553. [Google Scholar] [CrossRef]
- Yen, T.F.; Erdman, J.G.; Pollak, S.S. Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction. Anal. Chem. 1961, 33, 1587–1594. [Google Scholar] [CrossRef]
- Jäger, A.; Lackner, R.; Eisenmenger-Sittner, C.; Blab, R. Identification of Microstructural components of bitumen by means of Atomic Force microscopy (AFM). Proc. PAMM Appl. Math. Mech. 2004, 4, 400–401. [Google Scholar] [CrossRef]
- Handle, F.; Füssl, J.; Neudl, S.; Grossegger, D.; Eberhardsteiner, L.; Hofko, B.; Hospodka, M.; Blab, R.; Grothe, H. The bitumen microstructure: A fluorescent approach. Mater. Struct. 2016, 49, 167–180. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.; Zhang, Y. Influence of poly (phosphoric acid) on the properties and structure of ethylene-vinyl acetate-modified bitumen. J. Appl. Polym. Sci. 2018, 135, 46553. [Google Scholar] [CrossRef]
- Xu, X.; Yu, J.; Xue, L.; Zhang, C.; He, B.; Wu, M. Structure and performance evaluation on aged SBS modified bitumen with bi- or tri- epoxy reactive rejuvenating system. Constr. Build. Mater. 2017, 151, 479–486. [Google Scholar] [CrossRef]
- Tanaka, R.; Sato, E.; Hunt, J.E.; Winans, R.E.; Sato, S.; Takanohashi, T. Characterization of Asphaltene Aggregates Using X-ray Diffraction and Small-Angle X-ray Scattering. Energy Fuels 2004, 18, 1118–1125. [Google Scholar] [CrossRef]
- Kuang, D.; Ye, Z.; Yang, L.; Iu, N.; Lu, Z.; Che, H. Effect of Rejuvenator Containing Dodecyl Benzene Sulfonic Acid (DBSA) on Physical Properties, Chemical Components, Colloidal Structure and Micro-Morphology of Aged Bitumen. Materials 2018, 11, 1476. [Google Scholar] [CrossRef]
- Sharma, B.K.; Adhavaryu, A.; Liu, Z.; Erhan, S.Z. Chemical modification of vegetable oils for lubrificant application. J. Am. Oil Chem. Soc. 2006, 83, 129–136. [Google Scholar] [CrossRef]
- Thyrion, F. Asphalt Oxidation. In Asphaltenes and Asphalts: Development in Petroleum Science 2000; Elsevier: New York, NY, USA, 2000; pp. 445–474. [Google Scholar]
- Calandra, P.; Turco Liveri, V.; Caputo, P.; Teltayev, B.; Oliviero Rossi, C. Wide Angle X-Ray Scattering as a Technique of Choice to Probe Asphaltene Hierarchical structures. J. Nanosci. Nanotechnol. in press.
- Lu, I.; Isacsson, U. Influence of styrene-butadiene-styrene polymer modification on bitumen viscosity. Fuel 1997, 76, 1353–1359. [Google Scholar] [CrossRef]
- Edwards, Y. Influence of Waxes on Bitumen and Asphalt Concrete Mixture Performance. Road Mater. Pavement Des. 2009, 10, 313–335. [Google Scholar] [CrossRef]
- Senise, S.; Carrera, V.; Navarro, F.J.; Partal, P. Thermomechanical and microstructural evaluation of hybrid rubberised bitumen containing a thermoplastic polymer. Constr. Build. Mater. 2017, 157, 873–884. [Google Scholar] [CrossRef]
- Oliviero Rossi, C.; Ashimova, S.; Calandra, P.; De Santo, M.P.; Angelico, R. Mechanical Resilience of Modified Bitumen at Different Cooling Rates: A Rheological and Atomic Force Microscopy Investigation. Appl. Sci. 2017, 7, 779. [Google Scholar] [CrossRef]
- Remišová, E.; Holý, M. Changes of Properties of Bitumen Binders by Additives Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032003. [Google Scholar] [CrossRef] [Green Version]
- Abdullin, A.I.; Idrisov, M.R.; Emelyanycheva, E. Improvement of thermal-oxidative stability of petroleum bitumen using “overoxidation-dilution” technology and introduction of antioxidant additives. Pet. Sci. Technol. 2017, 35, 1859–1865. [Google Scholar] [CrossRef]
- Roberts, F.L.; Kandhal, P.S.; Brown, E.R.; Lee, D.Y.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design and Construction, 2nd ed.; NAPA: Lanham, MD, USA, 1996; p. 576. [Google Scholar]
- Lee, C.; Terrel, R.; Mahoney, J. Test for Efficiency of Mixing of Recycled Asphalt Paving Mixtures. In Proceedings of the Transportation Research Record 911; TRB: Washington, DC, USA, 1983. [Google Scholar]
- Carpenter, S.; Wolosick, J. Modifier Influence in the Characterization of Hot-Mix Recycled Material. In Proceedings of Transportation Research Record 777; TRB: Washington, DC, USA, 1980. [Google Scholar]
- Noureldin, S.; Wood, L. Rejuvenator Diffusion in Binder Film for Hot-Mix Recycled Asphalt Pavement. In Proceeding of Transportation Research Record 1115; TRB: Washington, DC, USA, 1987. [Google Scholar]
- Huang, B.; Li, G.; Vukosavljevic, D.; Shu, X.; Egan, B. Laboratory Investigation of Mixing Hot-Mix Asphalt with Reclaimed Asphalt Pavement. In Proceedings of Transportation Research Record 1929; TRB: Washington, DC, USA, 2005. [Google Scholar]
- Karlsson, R.; Isacsson, U. Investigations on Bitumen Rejuvenator Diffusion and Structural Stability. J. Assoc. Asph. Paving Technol. 2003, 72, 463–501. [Google Scholar]
- Oliver, J. Diffusion of Oils in Asphalts; Report No. 9; Proceedings of Australian Road Research Board: Vermont South, Victoria, Australia, 1975. [Google Scholar]
- Yousefi, A.A. Rubber-Modified Bitumens. Iran. Polym. J. 2002, 11, 303–309. [Google Scholar]
- Radenberg, M.; Boetcher, S.; Sedaghat, N. Effect and efficiency of rejuvenators on aged asphalt binder—German experiences. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June 2016. [Google Scholar]
- Airey, G.D.; Brown, S.F. Rheological Performance of Aged Polymer Modified Bitumens. J. Assoc. Asph. Paving Technol. 1998, 67, 66–100. [Google Scholar]
- Barbosa, L.L.; Kock, F.V.C.; Silva, R.C.; Freitas, J.C.C.; Lacerda Jr, V.; Castro, E.V.R. Application of low-field NMR for the determination of physical properties of petroleum fractions. Energy Fuels 2013, 27, 673–679. [Google Scholar] [CrossRef]
- Oliviero Rossi, C.; Caputo, P.; De Luca, G.; Maiuolo, L.; Eskandarsefat, S.; Sangiorgi, C. 1H-NMR Spectroscopy: A Possible Approach to Advanced Bitumen Characterization for Industrial and Paving Applications. Appl. Sci. 2018, 8, 229. [Google Scholar] [CrossRef]
- Caputo, P.; Loise, V.; Crispini, A.; Sangiorgi, C.; Scarpelli, F.; Oliviero Rossi, C. The efficiency of bitumen rejuvenator investigated through Powder X-ray Diffraction (PXRD) analysis and T2 -NMR spectroscopy. Colloids Surf. A Physicochem. Eng. Esp. 2019, 571, 50–54. [Google Scholar] [CrossRef]
- Osman, K.S.; Taylor, S.E. Insight into Liquid Interactions with Fibrous Absorbent Filter Media Using Low-Field NMR Relaxometry. Prospective Application to Water/Jet Fuel Filter−Coalescence. Ind. Eng. Chem. Res. 2017, 56, 14651–14661. [Google Scholar] [CrossRef]
- Bocci, E.; Grilli, A.; Bocci, M.; Gomes, V. Recycling of high percentage of reclaimed asphalt using bio-rejuvenator—A case study. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June 2016. [Google Scholar]
- Tine, T.; Lemoine, G.; Nösler, I.; Kloet, B. Influence of rejuvenating additives on recycled asphalt (RAP) properties. In Proceedings of the 5th Eurasphalt & Eurobitume Congress, Istanbul, Turkey, 13–15 June 2012. [Google Scholar]
- Król, J.B.; Kowalski, K.J.; Niczke, L.; Radziszewski, P. Effect of bitumen fluxing using a bio-origin additive. Constr. Build. Mater. 2016, 114, 194–203. [Google Scholar] [CrossRef]
- Somé, C.; Pavoine, A.; Chailleux, E.; Andrieux, L.; DeMArco, L.; Philippe Da, S.; Stephan, B. Rheological behaviour of vegetable oil-modified asphaltite binders and mixes. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June 2016. [Google Scholar]
- Caputo, P.; Porto, M.; Calandra, P.; De Santo, M.P.; Oliviero Rossi, C. Effect of epoxidized soybean oil on mechanical properties of bitumen and aged bitumen. Mol. Cryst. Liq. Cryst. 2018, 675, 68–74. [Google Scholar] [CrossRef]
- Zargar, M.; Ahmadinia, E.; Asli, H.; Karim, M.R. Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen. J. Hazard. Mater. 2012, 233, 254–258. [Google Scholar] [CrossRef]
- Nayak, P.; Sahoo, U.C. Rheological, chemical and thermal investigations on an aged binder rejuvenated with two nonedible oils. Road Mater. Pavement Des. 2016, 18, 612–629. [Google Scholar] [CrossRef]
- De la Roche, C.; Van de Ven, M.; Van den bergh, W.; Gabet, T.; Dubois, V.; Grenfell, J.; Porot, L. Development of a laboratory bituminous mixtures ageing protocol. In Advanced Testing and Characterization of Bituminous Materials, 1st ed.; Loizos, A., Partl, M.N., Scarpas, T., Al-Qadi, I.L., Eds.; CRC Press: AK Leiden, The Netherlands, 2009; Volume 1, pp. 331–345. [Google Scholar]
- Lamontagne, J.; Dumas, P.; Mouillet, V.; Kister, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Elkashef, M.; Williams, R.C.; Cochran, E. Thermal stability and evolved gas analysis of rejuvenated reclaimed asphalt pavement (RAP) bitumen using thermogravimetric analysis–Fourier transform infrared (TG–FTIR). J. Anal. Calorim. 2018, 131, 865–871. [Google Scholar] [CrossRef]
- Cavalli, M.C.; Zaumanis, M.; Mazza, M.; Partl, M.N.; Poulikakos, L.D. Effect of ageing on the mechanical and chemical properties of binder from RAP treated with bio-based rejuvenators. Compos. Part B Eng. 2018, 141, 174–181. [Google Scholar] [CrossRef]
- Marsac, P.; Piérard, N.; Porot, L.; Van den bergh, W.; Grenfell, J.; Mouillet, V.; Pouget, S.; Besamusca, J.; Farcas, F.; Gabet, T.; et al. Potential and limits of FTIR methods for reclaimed asphalt characterisation. Mater. Struct. 2014, 47, 1273–1286. [Google Scholar] [CrossRef]
- Elkashef, M.; Podolsky, J.; Williams, R.C.; Cochran, E.W. Introducing a soybean oil-derived material as a potential rejuvenator of asphalt through rheology, mix characterisation and Fourier Transform Infrared analysis. Road Mater. Pavement Des. 2017, 19, 1750–1770. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, G.; Gong, M.; Yang, J. Recycling long-term-aged asphalts using bio-binder/plasticizer-based rejuvenator. Constr. Build. Mater. 2017, 147, 117–129. [Google Scholar] [CrossRef]
- Elkashef, M.; Williams, R.C.; Cochran, E.W. Physical and chemical characterization of rejuvenated reclaimed asphalt pavement (RAP) binders using rheology testing and pyrolysis gas chromatography-mass spectrometry. Mater. Struct. 2018, 51, 12. [Google Scholar] [CrossRef]
- Mokhtari, A.; Lee, H.D.; Williams, R.C.; Guymon, C.A.; Scholte, J.P.; Schram, S. A novel approach to evaluate fracture surfaces of aged and rejuvenator-restored asphalt using cryo-SEM and image analysis techniques. Constr. Build. Mater. 2017, 133, 301–313. [Google Scholar] [CrossRef]
- Nahar, S.; Qiu, J.; Schmets, A.; Schlangen, E.; Shirazi, M.; van de Ven, M.; Schitter, G.; Scarpas, A. Turning Back Time: Rheological and Microstructural Assessment of Rejuvenated Bitumen. In Proceedings of the 93th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 12–16 January 2014. [Google Scholar]
- Kuang, D.; Yu, J.; Chen, H.; Feng, Z.; Li, R.; Yang, H. Effect of Rejuvenators on Performance and Microstructure of Aged Asphalt. J. Wuhan Univ. Technol. 2014, 29, 341–345. [Google Scholar] [CrossRef]
- Sharma, B.K.; Doll, K.M.; Erhan, S.Z. Ester hydroxyl derivatives of methyl oleate. Tribological, oxidation and low temperature properties. Bioresour. Technol. 2008, 99, 7333–7340. [Google Scholar] [CrossRef]
- King, J.W.; Holliday, R.L.; List, G.R.; Snyder, J.M. Hydrogenation of vegetable oils using mixture of supercritical carbon dioxide and hydrogen. J. Am. Oil Chem. Soc. 2001, 78, 107–113. [Google Scholar] [CrossRef]
- Campanella, A.; Baltanas, M.A.; Capel-Sanchez, M.C.; Campos-Martin, J.M.; Fierro, J.L.G. Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2 catalyst. Green Chem. 2004, 6, 330–334. [Google Scholar] [CrossRef]
- Xiang, S.; Chen, L.; Yang, X.; Zhang, P.; Zhu, L. Physiochemical and Tribological Properties of Triester Derivatives from Chemically Modified Waste Cooking Oil. Biotechnology 2015, 141, 1–8. [Google Scholar]
- Maiuolo, L.; De Nino, A.; Merino, P.; Russo, B.; Stabile, G.; Nardi, M.; D’Agostino, N.; Bernardi, T. Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones. Arab. J. Chem. 2016, 9, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Bortolini, O.; Mulani, I.; De Nino, A.; Maiuolo, L.; Melicchio, A.; Russo, B.; Granchi, D. Synthesis of a novel class of gem-phosphonate-phosphates by reductive cleavage of the isoxazolidine ring. Curr. Org. Synth. 2014, 11, 461–465. [Google Scholar] [CrossRef]
- Nardi, M.; Costanzo, P.; De Nino, A.; Di Gioia, M.L.; Olivito, F.; Sindona, G.; Procopio, A. Water excellent solvent for the synthesis of bifunctionalized cyclopentenones from furfural. Green Chem. 2017, 19, 5403–5411. [Google Scholar] [CrossRef]
- Di Gioia, M.L.; Nardi, M.; Costanzo, P.; De Nino, A.; Maiuolo, L.; Oliverio, M.; Procopio, A. Biorenewable deep eutectic solvent for selective and scalable conversion of furfural into cyclopentenone derivatives. Molecules 2018, 23, 1891. [Google Scholar] [CrossRef] [PubMed]
- Procopio, A.; Costanzo, P.; Dalpozzo, R.; Maiuolo, L.; Nardi, M.; Oliverio, M. Efficient ring opening of epoxides with trimethylsilyl azide and cyanide catalyzed by erbium(III) triflate. Tetrahedron Lett. 2010, 51, 5150–5153. [Google Scholar] [CrossRef]
- Bortolini, O.; De Nino, A.; Garofalo, A.; Maiuolo, L.; Russo, B. Mild oxidative conversion of nitroalkanes into carbonyl compounds in ionic liquids. Synth. Commun. 2010, 40, 2483–2487. [Google Scholar] [CrossRef]
- Nardi, M.; Di Gioia, M.L.; Costanzo, P.; De Nino, A.; Maiuolo, L.; Oliverio, M.; Olivito, F.; Procopio, A. Selective Acetylation of Small Biomolecules and Their Derivatives Catalyzed by Er(OTf)3. Catalysts 2017, 7, 269. [Google Scholar] [CrossRef]
- Avisha, C.; Debarati, M.; Dipa, B. Biolubricant synthesis from waste cooking oil via enzymatic hydrolysis followed by chemical esterification. J. Chem. Technol. Biotechnol. 2013, 88, 139–144. [Google Scholar]
- Okino-Delgad, C.H.; Zanoni do Prado, D.; Facanali, R.; Marques, M.M.O.; Nascimento, A.S.; da Costa Fernandes, C.J.; Zambuzzi, W.F.; Fleuri, L.F. Bioremediation of cooking oil waste using lipases from wastes. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.W.; de Paula, J.; Keeler, J. Physical Chemistry, 14th ed.; Oxford Press: Oxford, UK, 2011. [Google Scholar]
- De Giorgio, V.; Corti, M. Physics of Amphiphiles: Micelles; Vesicles and Microemulsions: North-Holland, The Netherlands, 1985. [Google Scholar]
- Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 11, 1–22. [Google Scholar] [CrossRef]
- Calandra, P.; Longo, A.; Ruggirello, A.; Turco Liveri, V. Physico-Chemical Investigation of the State of Cyanamide Confined in AOT and Lecithin Reversed Micelles. J. Phys. Chem. B 2004, 108, 8260–8268. [Google Scholar] [CrossRef]
- Calandra, P.; Giordano, C.; Ruggirello, A.; Turco Liveri, V. Physicochemical investigation of acrylamide solubilization in sodium bis(2-ethylhexyl)sulfosuccinate and lecithin reversed micelles. J. Colloid Interface Sci. 2004, 277, 206–214. [Google Scholar] [CrossRef]
- Longo, A.; Calandra, P.; Casaletto, M.P.; Giordano, C.; Venezia, A.; Turco Liveri, V. Synthesis and physico-chemical characterization of gold nanoparticles softly coated by AOT. Mater. Chem. Phys. 2006, 96, 66–72. [Google Scholar] [CrossRef]
- Calandra, P.; Giordano, C.; Longo, A.; Turco Liveri, V. Physicochemical investigation of surfactant-coated gold nanoparticles synthesized in the confined space of dry reversed micelles. Mater. Chem. Phys. 2006, 98, 494–499. [Google Scholar] [CrossRef]
- Calandra, P.; Di Marco, G.; Ruggirello, A.; Turco Liveri, V. Physico-chemical investigation of nanostructures in liquid phases: Nickel chloride ionic clusters confined in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles. J. Colloid Interface Sci. 2009, 336, 176–182. [Google Scholar] [CrossRef]
- Kakar, M.R.; Hamzah, M.O.; Akhtar, M.N. Surface free energy and moisture susceptibility evaluation of asphalt binders modified with surfactant-based chemical additive. J. Clean. Prod. 2016, 112, 2342–2353. [Google Scholar] [CrossRef]
- Ortega, F.J.; Navarro, F.J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels 2017, 31, 5003–5010. [Google Scholar] [CrossRef]
- Glatter, O.; Kratky, O. Small-Angle X-ray Scattering; Academic Press: London, UK, 1982. [Google Scholar]
- Shirzad, S.; Hassan, M.M.; Aguirre, M.A.; Mohammad, L.N. Evaluation of Sunflower Oil as a Rejuvenator and Its Microencapsulation as a Healing Agent. J. Mater. Civ. Eng. 2016, 28. [Google Scholar] [CrossRef]
- Fitter, J.; Gutberlet, T.; Katsaras, J. Neutron Scattering in Biology Techniques and Applications; Springer: Berlin, Germany, 2006; p. 560. [Google Scholar]
- Zemb, T.; Lindner, P. Neutron, X-rays and Light Scattering Methods Applied to Soft Condensed Matter, 1st ed.; North-Holland (publisher): Amsterdam, The Netherlands, 2002; p. 552. [Google Scholar]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering, 1st ed.; Plenum Press: New York, NY, USA; London, UK, 1987; p. 335. [Google Scholar]
- Magazù, S.; Migliardo, F.; Benedetto, A. Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS). Rev. Sci. Instrum. 2011, 82, 105115. [Google Scholar] [CrossRef] [PubMed]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering, 1st ed.; Wiley-Interscience: New York, NY, USA, 1976; p. 376. [Google Scholar]
- Brown, W. Light Scattering: Principles and Development, 1st ed.; Clarendon: Oxford, UK, 1996; p. 544. [Google Scholar]
- Nagana Gowda, G.A.; Chen, H.; Khetrapal, C.L.; Weiss, R.G. Amphotropic ionic liquid crystals with low order parameters. Chem. Mater. 2004, 16, 2101–2106. [Google Scholar] [CrossRef]
- Calandra, P.; Ruggirello, A.; Mele, A.; Turco Liveri, V. Self-assembly in surfactant-based liquid mixtures: Bis(2-ethylhexyl)phosphoric acid/bis(2-ethylhexyl)amine systems. J. Colloid Interface Sci. 2010, 348, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kuneida, H.; Vazquez, C.; Lopez-Quintela, M.A. Studies of domain size of hexagonal liquid crystals in C 12 EO 8 /water/alcohol systems. Langmuir 2001, 17, 7245–7250. [Google Scholar] [CrossRef]
- Calandra, P.; Turco Liveri, V.; Ruggirello, A.; Licciardi, M.; Lombardo, D.; Mandanici, A. Anti-Arrhenian behaviour of conductivity in octanoic acid–bis(2-ethylhexyl)amine systems: A physico-chemical study. J. Mater. Chem. C 2015, 3, 3198–3210. [Google Scholar] [CrossRef]
- Calandra, P.; Turco Liveri, V.; Riello, P.; Freris, I.; Mandanici, A. Self-assembly in surfactant-based liquid mixtures: Octanoic acid/Bis(2-ethylhexyl)amine systems. J. Colloid Interface Sci. 2012, 367, 280–285. [Google Scholar] [CrossRef]
- Turco Liveri, V.; Lombardo, D.; Pochylski, M.; Calandra, P. Molecular association of small amphiphiles: Origin of ionic liquid properties in dibutyl phosphate/propylamine binary mixtures. J. Mol. Liq. 2018, 263, 274–281. [Google Scholar] [CrossRef]
- Dickie, J.P.; Yen, T.F. Macrostructures of the Asphaltic Fractions by Various Instrumental Methods. Anal. Chem. 1967, 39, 1847–1852. [Google Scholar] [CrossRef]
- Calandra, P.; Mandanici, A.; Turco Liveri, V. Self-assembly in surfactant-based mixtures driven by acid–base reactions: Bis(2-ethylhexyl) phosphoric acid–n-octylamine systems. RSC Adv. 2013, 3, 5148–5155. [Google Scholar] [CrossRef]
- Calandra, P.; de Caro, T.; Caschera, D.; Lombardo, D.; Todaro, L.; Turco Liveri, V. Spectroscopic and structural characterization of pure and FeCl3-containing tri-n-butyl phosphate. Colloid Polym. Sci. 2014, 293, 597–603. [Google Scholar] [CrossRef]
- Cui, S.; de Almeida, V.F.; Hay, B.P.; Ye, X.; Khomami, B. Molecular dynamics simulation of Tri-n-butyl-phosphate liquid: A force field comparative study. J. Phys. Chem. B 2012, 116, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Charlesby, A.; Finch, G.I.; Wilman, H. The diffraction of electrons by anthracene. Proc. Phys. Soc. 1939, 51, 479–528. [Google Scholar] [CrossRef]
- Bale, H.D.; Schmidt, P.W. Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties. Phys. Rev. Lett. 1984, 53, 596–599. [Google Scholar] [CrossRef]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630. [Google Scholar] [CrossRef]
- Oliviero Rossi, C.; Spadafora, A.; Teltayev, B.; Izmailova, G.; Amerbayev, Y.; Bortolotti, V. Polymer modified bitumen: Rheological properties and structural characterization. Coll. Surf. A 2015, 480, 390–397. [Google Scholar] [CrossRef]
- Christensen, D.W.; Anderson, D.A. Rheological evidence concerning the molecular architecture of asphalt cements. Proc. Chem. Bitum. 1991, 2, 568–595. [Google Scholar]
- Oliviero Rossi, C.; Caputo, P.; Loise, V.; Ashimova, S.; Teltayev, T.; Sangiorgi, C. A New Green Rejuvenator: Evaluation of Structural Changes of Aged and Recycled Bitumens by Means of Rheology and NMR. In RILEM 252-CMB Symposium; RILEM 252-CMB 2018; Poulikakos, L., Cannone Falchetto, A., Wistuba, M., Hofko, B., Porot, L., Di Benedetto, H., Eds.; Springer: Cham, Switzerland, 2018; Volume 20. [Google Scholar]
Sample | IDT (°C) | Char Yield (%) | Residue (%) |
---|---|---|---|
RAP | 316 | 30 | 7 |
RAP + PG58-28 | 309 | 26 | 6 |
RAP + 12% Mod PG58-28 | 309 | 26 | 6 |
Index | Value |
---|---|
Penetration (25 °C, dmm) | 73 |
Ductility (15 °C, cm) | >150 |
Softening point/°C | 45.2 |
Viscosity (135 °C, Pa·s) | 0.6 |
Position (Å−1) | Features | Characteristic Distance (Å) | Meaning |
---|---|---|---|
1.3 | Dominant and broad | ~4.7 | combination of various intermolecular distances between alkyl and aromatic parts: See text |
2.9 | Broad and weak | 2.2 | interatomic distance within asphaltene; |
~0.5, varying | Not always present usually tiny | ~13 | supra-molecular aggregation: Repetition distance of aggregates of local asphaltene aggregates |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loise, V.; Caputo, P.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. A Review on Bitumen Rejuvenation: Mechanisms, Materials, Methods and Perspectives. Appl. Sci. 2019, 9, 4316. https://doi.org/10.3390/app9204316
Loise V, Caputo P, Porto M, Calandra P, Angelico R, Oliviero Rossi C. A Review on Bitumen Rejuvenation: Mechanisms, Materials, Methods and Perspectives. Applied Sciences. 2019; 9(20):4316. https://doi.org/10.3390/app9204316
Chicago/Turabian StyleLoise, Valeria, Paolino Caputo, Michele Porto, Pietro Calandra, Ruggero Angelico, and Cesare Oliviero Rossi. 2019. "A Review on Bitumen Rejuvenation: Mechanisms, Materials, Methods and Perspectives" Applied Sciences 9, no. 20: 4316. https://doi.org/10.3390/app9204316
APA StyleLoise, V., Caputo, P., Porto, M., Calandra, P., Angelico, R., & Oliviero Rossi, C. (2019). A Review on Bitumen Rejuvenation: Mechanisms, Materials, Methods and Perspectives. Applied Sciences, 9(20), 4316. https://doi.org/10.3390/app9204316