In Vitro and In Vivo Testing of Zinc as a Biodegradable Material for Stents Fabricated by Photo-Chemical Etching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Cylindrical Stents by Photo-Chemical Etching
2.2. Fabrication of Helical Stents
2.3. Mechanical Testing Setup
2.4. Coating of the Cylindrical Stents with Paralyene C
2.5. In-Vitro Study of Surface-Modified Cylindrical Stents
2.5.1. Corrosion Rate Evaluation by Weight Loss
2.5.2. Corrosion Rate Evaluation by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).
2.6. In-Vivo Study
3. Results and Discussion
3.1. Mechanical Testing
3.2. Characterization of the Parylene C Coating on Cylindrical Zn Stents
3.2.1. Composition of the Deposited Parylene C Coating
3.2.2. Morphology of the Parylene C Coating.
3.2.3. Contact Angle Measurements of Uncoated and Parylene C coated Zn Samples.
3.3. In-Vitro Study
3.3.1. Corrosion Rate Results Obtained by Weight Loss Measurements
3.3.2. Corrosion Rate Results by ICP-MS
3.4. In Vivo Study
3.4.1. In Vivo Corrosion
3.4.2. Histology study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finegold, J.A.; Asaria, P.; Francis, D.P. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations. Int. J. Cardiol. 2013, 168, 934–945. [Google Scholar] [CrossRef] [Green Version]
- Kastrati, A.; Mehilli, J.; Dirschinger, J.; Pache, J.; Ulm, K.; Schühlen, H.; Seyfarth, M.; Schmitt, C.; Blasini, R.; Neumann, F.J.; et al. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 2001, 87, 34–39. [Google Scholar] [CrossRef]
- Bowen, P.K.; Drelich, J.; Goldman, J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 2013, 25, 2577–2582. [Google Scholar] [CrossRef]
- Katarivas Levy, G.; Goldman, J.; Aghion, E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper. Metals 2017, 7, 402. [Google Scholar] [CrossRef]
- Bowen, P.K.; Shearier, E.R.; Zhao, S.; Guillory, R.J.; Zhao, F.; Goldman, J.; Drelich, J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Adv. Healthc. Mater. 2016, 5, 1121–1140. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Hua, Z.M.; Li, D.W.; Wei, D.S.; Liu, Y.; Wang, J.G.; Luo, D.; Wang, H.Y. Effect of Sn content on the microstructure, mechanical properties and corrosion behavior of biodegradable Mg-x (1, 3 and 5 wt.%) Sn-1Zn-0.5Ca alloys. Materials 2018, 11, 2378. [Google Scholar] [CrossRef]
- Niu, J.; Tang, Z.; Huang, H.; Pei, J.; Zhang, H.; Yuan, G.; Ding, W. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Mater. Sci. Eng. C 2016, 69, 407–413. [Google Scholar] [CrossRef]
- Han, P.; Tan, M.; Zhang, S.; Ji, W.; Li, J.; Zhang, X.; Zhao, C.; Zheng, Y.; Chai, Y. Shape and site dependent in vivo degradation of Mg-Zn pins in rabbit femoral condyle. Int. J. Mol. Sci. 2014, 15, 2959–2970. [Google Scholar] [CrossRef]
- Yang, H.; Wang, C.; Liu, C.; Chen, H.; Wu, Y.; Han, J.; Jia, Z.; Lin, W.; Zhang, D.; Li, W.; et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 2017, 145, 92–105. [Google Scholar] [CrossRef]
- Jackson, M.J. Physiology of Zinc: General Aspects; Zinc in Human Biology; Springer: London, UK, 1989; pp. 1–14. [Google Scholar]
- Plum, L.M.; Rink, L.; Hajo, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411. [Google Scholar] [CrossRef]
- Koo, Y.; Tiasha, T.; Shanov, V.N.; Yun, Y. Expandable Mg-based Helical Stent Assessment using Static, Dynamic, and Porcine Ex Vivo Models. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Shanov, V.N.; Roy-Chaudhury, P.; Schulz, M.; Yin, Z.; Campos-Naciff, B.; Wang, Y. Making Magnesium Biodegradable Stent for Medical Implant Applications. U.S. Patent 9,655,752, 23 May 2017. [Google Scholar]
- Ye, S.H.; Chen, Y.; Mao, Z.; Gu, X.; Shankarraman, V.; Hong, Y.; Shanov, V.; Wagner, W.R. Biodegradable Zwitterionic Polymer Coatings for Magnesium Alloy Stents. Langmuir 2019, 35, 1421–1429. [Google Scholar] [CrossRef]
- Coyan, G.N.; D’Amore, A.; Matsumura, Y.; Pedersen, D.D.; Luketich, S.K.; Shanov, V.; Katz, W.E.; David, T.E.; Wagner, W.R.; Badhwar, V. In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve. J. Thorac. Cardiovasc. Surg. 2019, 157, 1809–1816. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, S.H.; Sato, H.; Zhu, Y.; Shanov, V.; Tiasha, T.; D’Amore, A.; Luketich, S.; Wan, G.; Wagner, W.R. Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. J. Tissue Eng. Regen. Med. 2018, 12, 1374–1388. [Google Scholar] [CrossRef]
- Wang, J.; Giridharan, V.; Shanov, V.; Xu, Z.; Collins, B.; White, L.; Jang, Y.; Sankar, J.; Huang, N.; Yun, Y. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater. 2014, 10, 5213–5223. [Google Scholar] [CrossRef]
- Gu, X.; Mao, Z.; Ye, S.-H.; Koo, Y.; Yun, Y.; Tiasha, T.R.; Shanov, V.; Wagner, W.R. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Coll. Surf. B. Biointerfaces 2016, 144, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Mostaed, E.; Sikora-Jasinska, M.; Drelich, J.W.; Vedani, M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018, 71, 1–23. [Google Scholar] [CrossRef]
- Drelich, A.J.; Zhao, S.; Guillory, R.J.; Drelich, J.W.; Goldman, J. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate. Acta Biomater. 2017, 58, 539–549. [Google Scholar] [CrossRef]
- Guillory, R.J.; Bowen, P.K.; Hopkins, S.P.; Shearier, E.R.; Earley, E.J.; Gillette, A.A.; Aghion, E.; Bocks, M.; Drelich, J.W.; Goldman, J. Corrosion Characteristics Dictate the Long-Term Inflammatory Profile of Degradable Zinc Arterial Implants. ACS Biomater. Sci. Eng. 2016, 2, 2355–2364. [Google Scholar] [CrossRef]
- Vojtech, D.; Kubasek, J.; Serak, J.; Novak, P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011, 7, 3515–3522. [Google Scholar] [CrossRef]
- Jablonska, E.; Vojtech, D.; Fousova, M.; Kubasek, J.; Lipov, J.; Fojt, J.; Ruml, T. Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy. Mater. Sci. Eng. C 2016, 68, 198–204. [Google Scholar] [CrossRef]
- Li, H.F.; Xie, X.H.; Zheng, Y.F.; Cong, Y.; Zhou, F.Y.; Qiu, K.J.; Wang, X.; Chen, S.H.; Huang, L.; Tian, L.; et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015, 5, 1–14. [Google Scholar]
- Kaminska, M.; Okroj, W.; Szymanski, W.; Jakubowski, W.; Komorowski, P.; Nosal, A.; Szymanowski, H.; Gazicki-Lipman, M.; Jerczynska, H.; Pawłowska, Z.; et al. Interaction of parylene C with biological objects. Acta Bioeng. Biomech. 2009, 11, 19–25. [Google Scholar]
- Fontaine, A.B.; Koelling, K.; Dos Passos, S.; Cearlock, J.; Hoffman, R.; Spigos, D.G. Polymeric Surface Modifications of Tantalum Stents. J. Endovasc. Surg. 2004, 3, 276–283. [Google Scholar] [CrossRef]
- Surmeneva, M.A.; Vladescu, A.; Cotrut, C.M.; Tyurin, A.I.; Pirozhkova, T.S.; Shuvarin, I.A.; Elkin, B.; Oehr, C.; Surmenev, R.A. Effect of parylene C coating on the antibiocorrosive and mechanical properties of different magnesium alloys. Appl. Surf. Sci. 2018, 427, 617–627. [Google Scholar] [CrossRef]
- Kandala, B.S.P.K.; Zhang, G.; LCorriveau, C.; Paquin, M.; Shanov, V. In Vivo Study of Magnesium AZ31 Stent Fabricated by Photo-Chemical Etching. manuscript inprogress.
- Frazin, L.J.; Lanza, G.; Vonesh, M.; Khasho, F.; Spitzzeri, C.; McGee, S.; Mehlman, D.; Chandran, K.B.; Talano, J.; McPherson, D. Functional chiral asymmetry in descending thoracic aorta. Circulation 1990, 82, 1985–1994. [Google Scholar] [CrossRef]
- Segadal, L.; Matre, K. Blood velocity distribution in the human ascending aorta. Circulation 1987, 76, 90–100. [Google Scholar] [CrossRef]
- Karino, T.; Goldsmith, H.L.; Motomiya, M.; Mabuchi, S.; Sohara, Y. Flow patterns in vessels of simple and complex geometries. In Blood in Contact with Natural and Artificial Surfaces; Leonard, E.F., Turitto, V.T., Vroman, L., Eds.; Academy Press: New York, NY, USA, 1987; pp. 422–441. [Google Scholar]
- Kahouli, A.; Sylvestre, A.; Ortega, L.; Jomni, F.; Yangui, B.; Maillard, M.; Berge, B.; Robert, J.C.; Legrand, J. Structural and dielectric study of parylene C thin films. Appl. Phys. Lett. 2009, 94. [Google Scholar] [CrossRef]
- Cieslik, M.; Engvall, K.; Pan, J.; Kotarba, A. Silane-parylene coating for improving corrosion resistance of stainless steel 316 L implant material. Corros. Sci. 2011, 53, 296–301. [Google Scholar] [CrossRef]
- Spiro, R.G. Studies on Fetuin, a Glycoprotein of Fetal Serum. J. Biol. Chem. 1960, 235, 2860–2869. [Google Scholar]
- International Standard ISO 8407 ISO 10993-12; ISO: Geneva, Switzerland, 2009.
- Liu, L.; Meng, Y.; Dong, C.; Yan, Y.; Volinsky, A.A.; Wang, L.N. Initial formation of corrosion products on pure zinc in simulated body fluid. J. Mater. Sci. Technol. 2018, 34, 2271–2282. [Google Scholar] [CrossRef]
- ASTM Standard Practice for Laboratory Immersion Corrosion Testing of Metals. In Annual Book of ASTM Standards; ASM International Philadelphia: Philadelphia, PA, USA.
- Ibrahim, H.; Klarner, A.D.; Poorganji, B.; Dean, D.; Luo, A.A.; Elahinia, M. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. J. Mech. Behav. Biomed. Mater. 2017, 69, 203–212. [Google Scholar] [CrossRef]
- Vennemeyer, J.; Hopkins, T.; Hershcovitch, M.; Little, K.; Hagen, M.; Minteer, D.; Hom, D.; Marra, K.; Pixley, S. Initial observations on using magnesium metal in peripheral nerve repair. J. Biomater. Appl. 2015, 344, 1145–1154. [Google Scholar] [CrossRef]
- Asgari, M.; Hang, R.; Wang, C.; Yu, Z.; Li, Z.; Xiao, Y. Biodegradable Metallic Wires in Dental and Orthopedic Applications: A Review. Metals 2018, 8, 212. [Google Scholar] [CrossRef]
- Dent, J.A.; Polson, A.G.; Klymkowsky, M.W. A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 1989, 105, 61–74. [Google Scholar]
- Rieu, R.; Barragan, P.; Masson, C.; Fuseri, J.; Garitey, V.; Silvestri, M.; Roquebert, P. Radial force of coronary stents: A comparative analysis. Catheter. Cardiovasc. Interv. 1999, 46, 380–391. [Google Scholar] [CrossRef]
- Lee, T.; Lee, J.; Park, C. Characterization of parylene deposition process for the passivation of organic light emitting diodes. Korean J. Chem. Eng. 2002, 19, 722–727. [Google Scholar] [CrossRef]
- Bera, M.; Rivaton, A.; Gandon, C.; Gardette, J.L. Comparison of the photodegradation of parylene C and parylene N. Eur. Polym. J. 2000, 36, 1765–1777. [Google Scholar] [CrossRef]
- Song, J.S.; Lee, S.; Jung, S.H.; Cha, G.C.; Mun, M.S. Improved Biocompatibility of Parylene-C Films Prepared by Chemical Vapor Deposition and the Subsequent Plasma Treatment. J. Appl. Polym. Sci. 2010, 116, 2658–2667. [Google Scholar] [CrossRef]
- Balss, K.M.; Llanos, G.; Papandreou, G.; Maryanoff, C.A. Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy. J. Biomed. Mater. Res. Part A 2008, 85, 258–270. [Google Scholar] [CrossRef]
- Mathur, M.S.; Weir, A. Laser Raman and Infrared Spectrum of Poly-p-Xylylene. J. Mol. Struct. 1973, 15, 459–463. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandala, B.S.P.K.; Zhang, G.; Hopkins, T.M.; An, X.; Pixley, S.K.; Shanov, V. In Vitro and In Vivo Testing of Zinc as a Biodegradable Material for Stents Fabricated by Photo-Chemical Etching. Appl. Sci. 2019, 9, 4503. https://doi.org/10.3390/app9214503
Kandala BSPK, Zhang G, Hopkins TM, An X, Pixley SK, Shanov V. In Vitro and In Vivo Testing of Zinc as a Biodegradable Material for Stents Fabricated by Photo-Chemical Etching. Applied Sciences. 2019; 9(21):4503. https://doi.org/10.3390/app9214503
Chicago/Turabian StyleKandala, Bala Subramanya Pavan Kumar, Guangqi Zhang, Tracy M. Hopkins, Xiaoxian An, Sarah K. Pixley, and Vesselin Shanov. 2019. "In Vitro and In Vivo Testing of Zinc as a Biodegradable Material for Stents Fabricated by Photo-Chemical Etching" Applied Sciences 9, no. 21: 4503. https://doi.org/10.3390/app9214503
APA StyleKandala, B. S. P. K., Zhang, G., Hopkins, T. M., An, X., Pixley, S. K., & Shanov, V. (2019). In Vitro and In Vivo Testing of Zinc as a Biodegradable Material for Stents Fabricated by Photo-Chemical Etching. Applied Sciences, 9(21), 4503. https://doi.org/10.3390/app9214503