Contaminants of Emerging Concern Removal by High-Energy Oxidation-Reduction Processes: State of the Art
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Electron Beam Radiolysis Process
2.1.1. EB Technology
2.1.2. Radiolytic Process Kinetics
2.2. Nonthermal Plasma Processes
2.2.1. Non-thermal Plasma Technology
2.2.2. Plasma Process Kinetics
3. Results
3.1. EB Application Case Studies
3.2. NTP Application Case Studies
3.3. Energetic Considerations
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Daughton, C.G.; Jones-Lepp, T. Pharmaceuticals and Personal Care Products in the Environment—Scientific and Regulatory Issues; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 791. [Google Scholar]
- Copetti, D.; Marziali, L.; Viviano, G.; Valsecchi, L.; Guzzella, L.; Capodaglio, A.G.; Tartari, G.; Polesello, S.; Valsecchi, S.; Mezzanotte, V.; et al. Intensive monitoring of conventional and surrogate quality parameters in a highly urbanized river affected by multiple combined sewer overflows. Water Sci. Tech. Water Supply 2018, 19, 953–966. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Contaminants of Emerging Concern Including Pharmaceuticals and Personal Care Products. 2016. Available online: https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-.personal-care-products (accessed on 15 May 2017).
- Capodaglio, A.G.; Bojanowska-Czajka, A.; Trojanowicz, M. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions. Env. Sci. Poll. Res. 2018, 25, 27704–27723. [Google Scholar] [CrossRef]
- Capodaglio, A.G. In-stream detection of waterborne priority pollutants, and applications in drinking water contaminant warning systems. Water Sci. Tech. Water Supply 2017, 17, 707–725. [Google Scholar] [CrossRef]
- Lee Ventola, C. The Antibiotic Resistance Crisis Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Petrovic, M.; Gonzalez, S.; Barcelo, D. Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal. Chem. 2003, 22, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sanchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Shi, H.; Adams, C.D.; Timmons, T.; Ma, Y. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan. Sci. Total Environ. 2012, 439, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Cecconet, D.; Molognoni, D.; Callegari, A.; Capodaglio, A.G. Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater: A review and future perspectives. J. Environ. Chem. Eng. 2017, 5, 3590–3603. [Google Scholar] [CrossRef]
- Esplugas, S.; Bila, D.M.; Krause, L.G.T.; Dezotti, M. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 2007, 149, 631–642. [Google Scholar] [CrossRef]
- Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402–417. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Could EB irradiation be the simplest solution for removing emerging contaminants from water and wastewater? Water Pract. Tech. 2018, 13, 172–183. [Google Scholar] [CrossRef]
- Magureanu, M.; Mandache, N.B.; Parvulescu, V.I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res. 2015, 81, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Capodaglio, A.G. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ. Sci. Pollut. Res. 2017, 24, 20187–20208. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G. High-energy oxidation process: An efficient alternative for wastewater organic contaminants removal. Clean Technol. Environ. Policy 2017, 19, 1995–2006. [Google Scholar] [CrossRef]
- Sanchez-Polo, M.; Lopez-Penalver, J.; Prados-Joya, G.; Ferro-Garcia, M.A.; Rivera-Utrilla, J. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res. 2009, 43, 4028–4036. [Google Scholar] [CrossRef]
- Van Dyk, J.; Macdonald, J.F.C. Penetration of high energy electrons in water. Phys. Med. Biol. 1972, 17, 52–55. [Google Scholar]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radical (∙OH/∙O−) in aqueous solution. J. Phys. Chem. Ref. Data 1987, 17, 512–887. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Hu, J.; He, J.; Mei, S.; Xue, G.; Ognier, S. Removal of iopromide from an aqueous solution using dielectric barrier discharge. J. Chem. Technol. Biotechnol. 2013, 88, 468–473. [Google Scholar] [CrossRef]
- Locke, B.R.; Sato, M.; Sunka, P.; Hoffmann, M.R.; Chang, J.S. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 2006, 45, 882–905. [Google Scholar] [CrossRef]
- Pekarek, S. Non-thermal plasma ozone generation. Acta Polytech. 2003, 43, 47–51. [Google Scholar]
- Masuda, S.; Hosokawa, S.; Tu, X.; Wang, Z. Novel plasma chemical technologies -PPCP and SPCP for control of gaseous pollutants and air toxics. J. Electrost. 1995, 34, 415–438. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Jo, Y.M. Decomposition of odorous gases in a pilot-scale nonthermal plasma reactor. J. KOSAE 2005, 21, 57–65. [Google Scholar]
- Even-Ezra, I.; Mizrahi, A.; Gerrity, D.; Snyder, S.; Salveson, A.; Lahav, O. Application of a novel plasma-based advanced oxidation process for efficient and cost effective destruction of refractory organics in tertiary effluents and contaminated groundwater. Desalin. Water Treat. 2009, 11, 236–244. [Google Scholar] [CrossRef]
- Krause, H.; Schweiger, B.; Prinz, E.; Kim, J.; Steinfeld, U. Degradation of persistent pharmaceuticals in aqueous solutions by a positive dielectric barrier discharge treatment. J. Electrost. 2011, 69, 333–338. [Google Scholar] [CrossRef]
- Magureanu, M.; Piroi, D.; Mandache, N.B.; David, V.; Medvedovici, A.; Bradu, C.; Parvulescu, V.I. Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 2011, 45, 3407–3416. [Google Scholar] [CrossRef]
- Zhou Re Zhou Ru Zhang, X.; Li, J.; Wang, X.; Chen, Q.; Yang, S.; Chen, Z.; Bazaka, K.; Ostrikov, K. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media. Sci. Rep. 2016, 6, 39552. [Google Scholar] [CrossRef]
- Gao, L.; Sun, L.; Wan, S.; Yu, Z.; Li, M. Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: The case of 17β-Estradiol. Chem. Eng. J. 2013, 228, 790–798. [Google Scholar] [CrossRef]
- Kuk, S.H.; Kim, S.M.; Kang, W.G.; Han, B.; Kuksanov, N.K.; Jeong, K.Y. High power accelerator for environmental applications. J. Korean Phys. Soc. 2011, 59, 3485–3488. [Google Scholar] [CrossRef]
- Petrovic, M.; Gehringer, P.; Eschweiler, H.; Barcelo, D. Radiolytic decomposition of multi-class surfactants and their biotransformation products in sewage treatment plant effluents. Chemosphere 2007, 66, 114–122. [Google Scholar] [CrossRef]
- Homlok, R.; Takács, E.; Wojnárovits, L. Elimination of diclofenac from water using irradiation technology. Chemosphere 2011, 85, 603–608. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, X.; Zheng, Z.; Zheng, B.; Zhang, J.; Zhao, Y.; Yang, X.; Wang, Y.; Wang, L. Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation. Environ. Sci. Pollut. Res. 2011, 18, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Bojanowska-Czajka, A.; Kciuk, G.; Gumiela, M.; Borowiecka, S.; Nałęcz-Jawecki, G.; Koc, A.; Garcia-Reyes, J.F.; Solpan Ozbay, D.; Trojanowicz, M. Analytical, toxicological and kinetic investigation of decomposition of the drug diclofenac in waters and wastes using gamma radiation. Environ. Sci. Pollut. Res. 2015, 22, 20255–20270. [Google Scholar] [CrossRef] [PubMed]
- Gerrity, D.; Stanford, B.D.; Trenholm, R.A.; Snyder, S.A. An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation. Water Res. 2010, 44, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 627–637. [Google Scholar] [CrossRef]
- Ambrogi, E.K.; Asenath-Smith, E.; Ballard, W.A.; Moores, L.C.; Brame, J.A. Cross-Comparison of Advanced Oxidation Processes for Remediation of Organic Pollutants in Water Treatment Systems. In ERDC 6.2 Advanced Low Logistics Water (ALL-H2O) “Task 6: Catalytic Coatings for Oxidative/Reductive Destruction of Micropolutants,” Program Element 622720048, “Industrial Operations Pollution Control Guidance”; U.S. Army Corps of Engineers: Washington, DC, USA, 2019. [Google Scholar]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.Ö.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Kruithof, J.C.; Kamp, P.C.; Martijn, B.J. UV/H2O2 treatment: A practical solution for organic contaminant control and primary disinfection. Ozone Sci. Eng. 2007, 29, 273–280. [Google Scholar] [CrossRef]
- Sichel, C.; Garcia, C.; Andre, K. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Res. 2011, 45, 6371–6380. [Google Scholar] [CrossRef]
- Rózsa, G.; Náfrádi, M.; Alapi, T.; Schrantz, K.; Szabó, L.; Wojnárovits, L.; Takács, E.; Tungler, A. Photocatalytic, photolytic and radiolytic elimination of imidacloprid from aqueous solution: Reaction mechanism, efficiency and economic considerations. Appl. Catal. B Environ. 2019, 250, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Bolton, J.R.; Valladares, J.E.; Zanin, J.P.; Cooper, W.J.; Nickelson, M.G.; Kajdi, D.C.; Waite, T.D.; Kurucz, C.N. Figures-of-merit for advanced oxidation technologies: A comparison of homogeneous UV/H2O2, heterogeneous UV/TiO2 and electron beam processes. J. Adv. Oxid. Technol. 1998, 3, 174–181. [Google Scholar] [CrossRef]
- Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; et al. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process. Polym. 2018, 16, 1700238. [Google Scholar] [CrossRef]
- Maruthi, Y.A.; Lakshmana Das, N.; Hossain, K.; Sarma, K.S.S.; Rawat, K.S.; Sabharwal, S. Disinfection and reduction of organic load of sewage water by electron beam radiation. Appl. Water Sci. 2011, 1, 49–56. [Google Scholar] [CrossRef] [Green Version]
Species | Potential, E° (V, 25 °C) |
---|---|
Hydroxyl radical (·HO) | 2.86 |
Atomic oxygen (O) | 2.42 |
Ozone molecule (O3) | 2.07 |
Hydrogen peroxide (H2O2) | 1.78 |
Chlorine (Cl2) | 1.36 |
Oxygen molecule (O2) | 1.23 |
Radiation source | Energy (kW) | Calculated dose-Rate (MGy/h) |
---|---|---|
60Co γ-source | ||
0.5 × 106 Ci * | 0.18 | 0.65 |
1.0 × 106 Ci | 0.36 | 1.30 |
Electron Beam (EB) | ||
1 mA, 1 MeV | 7.2 × 103 | |
10 mA, 10 MeV | 100 | 3.6 × 105 |
50 mA, 10 MeV | 500 | 1.8 × 106 |
Components in Solution | ||
---|---|---|
Metals | Organic Molecules | Pathogens and Algae |
|
|
|
Compound | Bimolecular Rate Constants (M−1s−1 109) | Relative Importance of Species (%) | ||||
---|---|---|---|---|---|---|
Target Organic Compounds * | ·OH | e-aq | ·H | ·OH | e-aq | ·H |
MTBE | 2 | 0.0175 | 0.0001 | 99 | 1 | 0 |
Trichloroethylene | 2.9 | 1.9 | NF | 61 | 39 | 0 |
Tetrachloroethylene | 2 | 1.3 | 5 | 46 | 29 | 25 |
Benzene | 7.6 | 0.009 | 0.91 | 97 | 01 | 3 |
Toluene | 5.1 | 0.011 | 2.6 | 90 | 0.1 | 10 |
Ethylbenzene | 7.5 | NF | NF | 100 | 0 | 0 |
o-Xylene | 6.7 | NF | 2 | 94 | 0 | 6 |
Chloroform | 0.054 | 11 | 0.073 | 0.4 | 99 | 0.1 |
CHBrCl2 | NF | 21 | NF | 0 | 10 | 0 |
CHBr2Cl | NF | 20 | NF | 0 | 10 | 0 |
Bromoform | 0.11 | 26 | 1.9 | 0.5 | 97.5 | 2 |
Ethylene dibromide | 0.26 | 14 | NF | 2 | 98 | 0 |
DBCP | 0.73 | NF | NF | 100 | 0 | 0 |
NDMA | 0.33 | NF | NF | 100 | 0 | 0 |
Atrazine | 2.6 | NF | NF | 100 | 0 | 0 |
Simazine | 208 | NF | NF | 100 | 0 | 0 |
Removal % | Compound (C0-µg/L) | Discharge Power (W) | HRT (min) | Comments |
---|---|---|---|---|
100 | Amoxicillin (100) | 2 | 10 | TOC removal 22.5% (after 120 min HRT) |
Ampicillin (n.a.) | = | 30 | TOC removal 29% (after 120 min HRT) | |
Oxacillin (n.a.) | = | 30 | TOC removal 25% (after 120 min HRT) | |
Clofibric acid (21.5) | 500 | 30 | = | |
Diclofenac (50) | 24 | 15 | TOC removal 50% (after 30 min HRT) | |
Paracetamol (100) | 250 | 20 | TOC removal 27% (after 30 min HRT) | |
Indomethacin (90) | 250 | 5 | TOC removal 37% (after 20 min HRT) | |
95–99 | Sulfadiazine (10) | 100 | 27 | TOC removal 23% |
Iopromide (79.1) | 500 | 30–60 | = | |
Iopromide (17) | 2.5 | 10 | TOC removal 0% | |
Enalapril (50) | 2 | 120 | TOC removal 17.5% | |
Carbamazepine (23.6) | 500 | 30–60 | = | |
90–94 | Carbamazepine (20) | 12 | 60 | TOC removal 19.4% |
Pentoxifylline (100) | 1.2 | 60 | = | |
Ibuprofen (60) | 3 | 80 | TOC removal 34% (after 180 min HRT) | |
80–90 | Sulfadiazine (10) | 100 | 15 | TOC removal 25% (after 30 min HRT) |
Tetracycline (50) | 36 | 15 | TOC removal 53.4% | |
Ibuprofen (110) | 250 | 30 | TOC removal 32% | |
60–70 | Tetracycline (50) | 36 | 24 | TOC removal 23.5% |
β-Oestradiol (3) | 120 | 30 | = |
Contaminant | NTP a Range (mean) | UV b | UV/H2O2 b,c | UV/TiO2 b,d |
---|---|---|---|---|
Meprobamate | 2.1–5.3 (3.5) | 6.6 | 1.0 | 6.8 |
Dilantin | 1.1–3.1 (2.0) | 2.1 | 1.0 | 3.1 |
Primidone | 1.1–3.3 (2.2) | 3.7 | 0.3 | 3.9 |
Carbamazepine | 0.3–1.2 (0.7) | 2.3 | 0.4 | 2.1 |
Atenolol | 0.4–1.7 (1.0) | 1.4 | 0.5 | 2.0 |
Trimethoprim | 0.3–1.2 (0.7) | 0.8 | 0.4 | 1.5 |
Atrazine | 2.2–6.3 (3.7) | 3.3 | 1.2 | 4.7 |
AOP Type | EEO Range [kWh m−3 Order−1] | EEO Median Value [kWh m−3 Order−1] |
---|---|---|
Ozonation | 0.07–0.3 | 0.15 |
O3/H2O2 | 0.1–1.5 | 0.2 |
EB | 0.2–1 | 0.3 |
UV/Cl | 0.2–0.7 | 0.4 |
UV/persulfate | 0.2–1.1 | 0.67 |
O3/UV | 0.25–1 | 0.7 |
UV/H2O2 | 0.3–1.2 | 0.75 |
Photo-Fenton | 1.1–10 | 2.6 |
Plasma (any) | 1.1–12 | 3.3 |
e-AOPs | 10–70 | 38 |
UV/catalyst | 150–450 | 335 |
Microwave | 500–700 | 540 |
Ultrasound | 800–8000 | 2600 |
m3/day Treated | Electron Beam | Ozone | UV | Chlorine |
---|---|---|---|---|
10,000 | 0.29 | 0.25 | 0.17 | 0.013 |
50,000 | 0.073 | 0.086 | 0.171 | 0.013 |
100,000 | 0.050 | 0.064 | 0.054 | 0.013 |
200,000 | 0.041 | 0.053 | 0.047 | 0.013 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodaglio, A.G. Contaminants of Emerging Concern Removal by High-Energy Oxidation-Reduction Processes: State of the Art. Appl. Sci. 2019, 9, 4562. https://doi.org/10.3390/app9214562
Capodaglio AG. Contaminants of Emerging Concern Removal by High-Energy Oxidation-Reduction Processes: State of the Art. Applied Sciences. 2019; 9(21):4562. https://doi.org/10.3390/app9214562
Chicago/Turabian StyleCapodaglio, Andrea G. 2019. "Contaminants of Emerging Concern Removal by High-Energy Oxidation-Reduction Processes: State of the Art" Applied Sciences 9, no. 21: 4562. https://doi.org/10.3390/app9214562
APA StyleCapodaglio, A. G. (2019). Contaminants of Emerging Concern Removal by High-Energy Oxidation-Reduction Processes: State of the Art. Applied Sciences, 9(21), 4562. https://doi.org/10.3390/app9214562