Energy Consumption Model for Drilling Processes Based on Cutting Force
Abstract
:1. Introduction
2. Energy Consumption in Drilling Processes
2.1. Energy Composition in a Drilling Process
2.2. The Idle Power
2.3. The Cutting Power
2.4. The Auxiliary Power
2.5. The Power Consumption Model
3. Energy Consumption Model Calibration Experiments
3.1. Experiment Details
3.2. Energy Consumption Model Calibration
4. Results and Discussions
4.1. Model Validation
4.2. Model Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Niamir, L.; Filatova, T.; Voinov, A.; Bressers, H. Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy 2018, 118, 325–345. [Google Scholar] [CrossRef]
- Yuchi, Q.; Wang, N.; Li, S.; Jiang, B. A Bi-objective Reverse Logistics Network Design under the Emission Trading Scheme. IEEE Access 2019. [Google Scholar] [CrossRef]
- Tuo, J.; Liu, P.; Liu, F. Dynamic Acquisition and Real-time Distribution of Carbon Emission for Machining Through Mining Energy Data. IEEE Access 2019, 7. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, K.; Liu, S.; Cheng, H.; Wang, R. Investigation on the Interface Damage in Drilling Low-stiffness CFRP/Ti Stacks. Chin. J. Aeronaut. 2019, 32, 2211–2221. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Tang, K.; Zhang, Y. A mechanics based prediction model for tool wear and power consumption in drilling operations and its applications. J. Clean. Prod. 2019, 234, 171–184. [Google Scholar] [CrossRef]
- Luo, M.; Han, C.; Hafeez, H.M. Four-axis trochoidal toolpath planning for rough milling of aero-engine blisks. Chin. J. Aeronaut. 2019, 32, 2009–2016. [Google Scholar] [CrossRef]
- Cai, W.; Liu, F.; Zhou, X.N.; Xie, X. Fine energy consumption allowance of workpieces in the mechanical manufacturing industry. Energy 2016, 114, 623–633. [Google Scholar] [CrossRef]
- Zhou, L.; Li, J.; Li, F.; Meng, Q.; Li, J.; Xu, X. Energy consumption model and energy efficiency of machine tools: A comprehensive literature review. J. Clean. Prod. 2016, 112, 3721–3734. [Google Scholar] [CrossRef]
- Gutowski, T.G.; Branham, M.S.; Dahmus, J.B.; Jones, A.J.; Thiriez, A.; Sekulic, D.P. Thermodynamic analysis of resources used in manufacturing processes. Environ. Sci. Technol. 2009, 43, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Kara, S.; Li, W. Unit process energy consumption models for material removal processes. CIRP Ann. 2011, 60, 37–40. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Xing, Z. Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. J. Clean. Prod. 2013, 52, 113–121. [Google Scholar] [CrossRef]
- Costa DM, D.; Brito, T.G.; de Paiva, A.P.; Leme, R.C.; Balestrassi, P.P. A normal boundary intersection with multivariate mean square error approach for dry end milling process optimization of the AISI 1045 steel. J. Clean. Prod. 2016, 135, 1658–1672. [Google Scholar] [CrossRef]
- Zhong, Q.; Tang, R.; Peng, T. Decision rules for energy consumption minimization during material removal process in turning. J. Clean. Prod. 2017, 140, 1819–1827. [Google Scholar] [CrossRef]
- Guo, Y.; Loenders, J.; Duflou, J.; Lauwers, B. Optimization of energy consumption and surface quality in finish turning. Procedia CIRP 2012, 1, 512–517. [Google Scholar] [CrossRef]
- Xu, K.; Luo, M.; Tang, K. Machine based energy-saving tool path generation for five-axis end milling of freeform surfaces. J. Clean. Prod. 2016, 139, 1207–1223. [Google Scholar] [CrossRef]
- Draganescu, F.; Gheorghe, M.; Doicin, C.V. Models of machine tool efficiency and specific consumed energy. J. Mater. Process. Technol. 2003, 141, 9–15. [Google Scholar] [CrossRef]
- Rodrigues, A.R.; Coelho, R.T. Influence of the tool edge geometry on specific cutting energy at high-speed cutting. J. Braz. Soc. Mech. Sci. Eng. 2007, 29, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Kara, S. An empirical model for predicting energy consumption of manufacturing processes: A case of turning process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 1636–1646. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.F.; Lu, W.F. A hybrid approach to energy consumption modelling based on cutting power: A milling case. J. Clean. Prod. 2015, 104, 264–272. [Google Scholar] [CrossRef]
- Shi, K.N.; Zhang, D.H.; Liu, N.; Wang, S.B.; Ren, J.X.; Wang, S.L. A novel energy consumption model for milling process considering tool wear progression. J. Clean. Prod. 2018, 184, 152–159. [Google Scholar] [CrossRef]
- Shi, K.N.; Ren, J.X.; Wang, S.B.; Liu, N.; Liu, Z.M.; Zhang, D.H.; Lu, W.F. An improved cutting power-based model for evaluating total energy consumption in general end milling process. J. Clean. Prod. 2019, 231, 1330–1341. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Zhu, Y.; Zhu, D. Machining of a film-cooling hole in a single-crystal superalloy by high-speed electrochemical discharge drilling. Chin. J. Aeronaut. 2016, 29, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Zhang, H.; Cao, H.; Hon, K.K.B. An energy consumption optimization strategy for CNC milling. Int. J. Adv. Manuf. Technol. 2017, 90, 1715–1726. [Google Scholar] [CrossRef]
- Lee, P.; Altintaş, Y. Prediction of ball-end milling forces from orthogonal cutting data. Int. J. Adv. Mech. Des. Syst. Manuf. 1996, 36, 1059–1072. [Google Scholar] [CrossRef]
- Budak, E.; Armarego, E.J.A. Prediction of milling force coefficients from orthogonal cutting data. J. Manuf. Sci.Eng 1996, 118, 216–224. [Google Scholar] [CrossRef]
- Hu, S.; Liu, F.; He, Y.; Peng, B. Characteristics of additional load losses of spindle system of machine tools. J. Adv. Mech. Des. Syst. Manuf. 2010, 4, 1221–1233. [Google Scholar] [CrossRef]
- Hu, S.; Liu, F.; He, Y.; Hu, T. An on-line approach for energy efficiency monitoring of machine tools. J. Clean. Prod. 2012, 27, 133–140. [Google Scholar] [CrossRef]
- Han, C.; Zhang, D.; Luo, M.; Wu, B. Chip evacuation force modelling for deep hole drilling with twist drills. Int. J. Adv. Manuf. Technol. 2018, 98, 3091–3103. [Google Scholar] [CrossRef]
n (rpm) | c (mm/r) | |||
---|---|---|---|---|
400 | 0.08 | 0.11 | 0.14 | 0.17 |
550 | 0.08 | 0.11 | 0.14 | 0.17 |
700 | 0.08 | 0.11 | 0.14 | 0.17 |
850 | 0.08 | 0.11 | 0.14 | 0.17 |
No. | n (rpm) | f (mm/min) | Ptotal (W) | Pidle (W) | Pcutting (W) |
---|---|---|---|---|---|
1 | 400 | 32 | 1625.0 | 1290.0 | 262.4 |
2 | 400 | 44 | 1679.0 | 1290.0 | 313.4 |
3 | 400 | 56 | 1744.6 | 1290.0 | 364.4 |
4 | 400 | 68 | 1781.4 | 1290.0 | 415.6 |
5 | 550 | 44 | 1750.0 | 1340.6 | 360.9 |
6 | 550 | 60.5 | 1837.4 | 1340.6 | 430.9 |
7 | 550 | 77 | 1937.0 | 1340.6 | 501.1 |
8 | 550 | 93.5 | 2001.8 | 1340.6 | 571.5 |
9 | 700 | 56 | 1906.1 | 1404.7 | 459.3 |
10 | 700 | 77 | 1988.8 | 1404.7 | 548.4 |
11 | 700 | 98 | 2117.4 | 1404.7 | 637.8 |
12 | 700 | 119 | 2217.9 | 1404.7 | 727.4 |
13 | 850 | 68 | 2067.9 | 1482.3 | 557.7 |
14 | 850 | 93.5 | 2217.5 | 1482.3 | 665.9 |
15 | 850 | 119 | 2354.8 | 1482.3 | 774.4 |
16 | 850 | 144.5 | 2474.4 | 1482.3 | 883.2 |
No. | n (rpm) | f (mm/min) | MRR (mm3/s) | P (W) | Pidle (W) | Pcutting (W) | P * (W) | Accuracy |
---|---|---|---|---|---|---|---|---|
1 | 400 | 76.4 | 100 | 1851.0 | 1290.0 | 472.1 | 1826.1 | 98.66% |
2 | 550 | 76.4 | 100 | 1925.7 | 1340.6 | 507.9 | 1917.3 | 99.57% |
3 | 700 | 76.4 | 100 | 2010.6 | 1404.7 | 543.9 | 2022.4 | 99.41% |
4 | 850 | 76.4 | 100 | 2105.2 | 1482.3 | 580.2 | 2141.1 | 98.30% |
Power Form | Power Expression | |
---|---|---|
Model-1 | ||
Model-2 | ||
Model-3 |
No. | P (W) | P * (W) | P1 (W) | P2 (W) | P3 (W) |
---|---|---|---|---|---|
1 | 1625.0 | 1587.5 | 1635.6 | 1547.0 | 1606.7 |
2 | 1679.0 | 1645.2 | 1726.3 | 1638.0 | 1687.3 |
3 | 1744.6 | 1703.1 | 1817.1 | 1729.1 | 1750.6 |
4 | 1781.4 | 1761.1 | 1907.8 | 1820.2 | 1860.1 |
5 | 1750.0 | 1749.6 | 1726.3 | 1688.1 | 1745.9 |
6 | 1837.4 | 1829.0 | 1851.1 | 1813.4 | 1843.4 |
7 | 1937.0 | 1908.6 | 1975.9 | 1938.6 | 1964.7 |
8 | 2001.8 | 1988.4 | 2100.7 | 2063.8 | 2096.2 |
9 | 1906.1 | 1925.3 | 1817.1 | 1829.3 | 1830.4 |
10 | 1988.8 | 2026.4 | 1975.9 | 1988.7 | 1985.6 |
11 | 2117.4 | 2127.7 | 2134.7 | 2148.1 | 2205.7 |
12 | 2217.9 | 2229.2 | 2293.5 | 2307.4 | 2265.8 |
13 | 2067.9 | 2114.5 | 1907.8 | 1970.5 | 2000.3 |
14 | 2217.5 | 2237.2 | 2100.7 | 2164.0 | 2146.6 |
15 | 2354.8 | 2360.2 | 2293.5 | 2357.5 | 2301.7 |
16 | 2474.4 | 2483.5 | 2486.4 | 2551.1 | 2445.4 |
Average prediction error | - | 1.13% | 3.09% | 2.39% | 2.09% |
No. | P (W) | P * (W) | P1 (W) | P2 (W) | P3 (W) | Error * | Error1 | Error2 | Error3 |
---|---|---|---|---|---|---|---|---|---|
1 | 1851.0 | 1826.1 | 1971.6 | 1884.2 | 2.16% | 1.34% | 6.52% | 1.80% | 2.72% |
2 | 1925.7 | 1917.3 | 1971.6 | 1934.3 | 1.31% | 0.43% | 2.39% | 0.45% | 1.31% |
3 | 2010.6 | 2022.4 | 1971.6 | 1984.4 | 0.47% | 0.59% | 1.94% | 1.30% | 0.47% |
4 | 2105.2 | 2141.1 | 1971.6 | 2034.5 | 2.93% | 1.70% | 6.35% | 3.36% | 2.56% |
Average prediction error | 1.02% | 4.30% | 1.73% | 1.77% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, D.; Chen, B.; Zhang, Y.; Wu, B. Energy Consumption Model for Drilling Processes Based on Cutting Force. Appl. Sci. 2019, 9, 4801. https://doi.org/10.3390/app9224801
Wang Q, Zhang D, Chen B, Zhang Y, Wu B. Energy Consumption Model for Drilling Processes Based on Cutting Force. Applied Sciences. 2019; 9(22):4801. https://doi.org/10.3390/app9224801
Chicago/Turabian StyleWang, Qi, Dinghua Zhang, Bing Chen, Ying Zhang, and Baohai Wu. 2019. "Energy Consumption Model for Drilling Processes Based on Cutting Force" Applied Sciences 9, no. 22: 4801. https://doi.org/10.3390/app9224801
APA StyleWang, Q., Zhang, D., Chen, B., Zhang, Y., & Wu, B. (2019). Energy Consumption Model for Drilling Processes Based on Cutting Force. Applied Sciences, 9(22), 4801. https://doi.org/10.3390/app9224801