Measurement of the Near Field Distribution of a Microwave Horn Using a Resonant Atomic Probe
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kanda, M.; Driver, L.D. An Isotropic Electric-Field Probe with Tapered Resistive Dipoles for Broad-Band Use, 100 kHz to 18 GHz. IEEE Trans. Microw. Theory Tech. 1987, 35, 124–130. [Google Scholar] [CrossRef]
- Holloway, C.L.; Gordon, J.A.; Jefferts, S.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Broadband Rydberg Atom-Based Electric-Field Probe for SI-Traceable, Self-Calibrated Measurements. IEEE Trans. Antenn. Propag. 2014, 62, 6169–6182. [Google Scholar] [CrossRef]
- Kanda, M. Standard Probes for Electromagnetic Field Measurements. IEEE Trans. Antenn. Propag. 1993, 41, 1349–1364. [Google Scholar] [CrossRef]
- Hall, J.L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 2006, 78, 1279. [Google Scholar] [CrossRef]
- Bloom, B.J.; Nicholson, T.L.; Williams, J.R.; Campbell, S.L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S.L.; Ye, J. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 2014, 506, 71. [Google Scholar] [CrossRef]
- Savukov, I.M.; Seltzer, S.J.; Romalis, M.V.; Sauer, K.L. Tunable Atomic Magnetometer for Detection of Radio-Frequency Magnetic Fields. Phys. Rev. Lett. 2005, 95, 063004. [Google Scholar] [CrossRef]
- Patton, B.; Versolato, O.O.; Hovde, D.C.; Corsini, E.; Higbie, J.M.; Budker, D. A remotely interrogated all-optical 87Rb magnetometer. Appl. Phys. Lett. 2012, 101, 083502. [Google Scholar] [CrossRef]
- Gallagher, T.F. Rydberg Atoms; Cambridge University Press: New York, NY, USA, 1994. [Google Scholar]
- Autler, S.H.; Townes, C.H. Stark Effect in Rapidly Varying Fields. Phys. Rev. 1955, 100, 703. [Google Scholar] [CrossRef]
- Mohapatra, A.K.; Jackson, T.R.; Adams, C.S. Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 2007, 98, 113003. [Google Scholar] [CrossRef]
- Grimmel, J.; Mack, M.; Karlewski, F.; Jessen, F.; Reinschmidt, M.; Sándor, N.; Fortágh, J. Measurement and numerical calculation of Rubidium Rydberg Stark spectra. New J. Phys. 2015, 17, 053005. [Google Scholar] [CrossRef]
- Mack, M.; Karlewski, F.; Hattermann, H.; Höckh, S.; Jessen, F.; Cano, D.; Fortágh, J. Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency. Phys. Rev. A 2011, 83, 052515. [Google Scholar] [CrossRef]
- Fan, H.Q.; Kumar, S.; Sedlacek, J.; Kübler, H.; Karimkashi, S.; Shaffer, J.P. Atom based RF electric field sensing. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 202001. [Google Scholar] [CrossRef]
- Song, Z.F.; Liu, H.P.; Liu, X.C.; Zhang, W.F.; Zou, H.Y.; Zhang, J.; Qu, J.F. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Opt. Express 2019, 27, 8848–8857. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.C.; Han, X.X.; Fan, J.B.; Raithel, G.; Zhao, J.M.; Jia, S.T. Atom-based quantum receiver for amplitude- and frequency-modulated baseband signals in high-frequency radio communication. arXiv 2018, arXiv:1804.07044v1. [Google Scholar]
- Anderson, D.A.; Paradis, E.; Raithel, G.; Sapiro, R.E.; Simons, M.T.; Holloway, C.L. High-resolution near-field imaging and far-field antenna measurements with atomic sensors. In Proceedings of the International Symposium on Electromagnetic Compatibility (EMC Europe), Amsterdam, The Netherlands, 27–30 August 2018; p. 391. [Google Scholar]
- Cox, K.C.; Meyer, D.H.; Fatemi, F.K.; Kunz, P.D. Quantum-Limited Atomic Receiver in the Electrically Small Regime. Phys. Rev. Lett. 2018, 121, 110502. [Google Scholar] [CrossRef]
- Shylla, D.; Nyakang’o, E.O.; Pandey, K. Highly sensitive atomic based MW interferometry. Sci. Rep. 2018, 8, 8692. [Google Scholar] [CrossRef]
- Jiao, Y.C.; Hao, L.P.; Han, X.X.; Bai, S.Y.; Raithel, G.; Zhao, J.M.; Jia, S.T. Atom-Based Radio-Frequency Field Calibration and Polarization Measurement Using Cesium nDJ Floquet States. Phys. Rev. Appl. 2017, 8, 014028. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.Q.; Kübler, H.; Jahangiri, A.J.; Shaffer, J.P. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express 2017, 25, 8625. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.Q.; Kübler, H.; Sheng, J.T.; Shaffer, J.P. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout. Sci. Rep. 2017, 7, 42981. [Google Scholar] [CrossRef]
- Anderson, D.A.; Raithel, G. Continuous-frequency measurements of high-intensity microwave electric fields with atomic vapor cells. Appl. Phys. Lett. 2017, 111, 053504. [Google Scholar] [CrossRef]
- Veit, C.; Epple, G.; Kübler, H.; Euser, T.G.; Russell, P.S.J.; Löw, R. RF-dressed Rydberg atoms in hollow-core fibres. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 134005. [Google Scholar] [CrossRef]
- Jiao, Y.C.; Han, X.X.; Yang, Z.W.; Li, J.K.; Raithel, G.; Zhao, J.M.; Jia, S.T. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields. Phys. Rev. A 2016, 94, 023832. [Google Scholar] [CrossRef]
- Fan, H.Q.; Kumar, S.; Sheng, J.T.; Shaffer, J.P. Effect of Vapor-Cell Geometry on Rydberg-Atom-Based Measurements of Radio-Frequency Electric Fields. Phys. Rev. Appl. 2015, 4, 044015. [Google Scholar] [CrossRef]
- Fan, H.Q.; Kumar, S.; Daschner, R.; Kübler, H.; Shaffer, J.P. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. Opt. Lett. 2014, 39, 3030. [Google Scholar] [CrossRef]
- Holloway, C.L.; Gordon, J.A.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler–Townes splitting in Rydberg atoms. Appl. Phys. Lett. 2014, 104, 244102. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.J.; Wang, L.M.; Bao, S.X.; Zhao, J.M.; Jia, S.T. Autler–Townes spectroscopy with interaction-induced dephasing. Phys. Rev. A 2014, 90, 043849. [Google Scholar] [CrossRef]
- Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Löw, R.; Pfau, T.; Shaffer, J.P. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 2012, 8, 819. [Google Scholar] [CrossRef]
- Downes, L.A.; MacKellar, A.R.; Whiting, D.J.; Bourgenot, C.; Adams, C.S.; Weatherill, K.J. Ultra-high-speed Terahertz Imaging using Atomic Vapour. arXiv 2019, arXiv:1903.01308v2. [Google Scholar]
- Wade, C.G.; Šibalić, N.; Melo, N.R.d.; Kondo, J.M.; Adams, C.S.; Weatherill, K.J. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics 2016, 11, 40. [Google Scholar] [CrossRef]
- Pearman, C.P.; Adams, C.S.; Cox, S.G.; Griffin, P.F.; Smith, D.A.; Hughes, I.G. Polarization spectroscopy of a closed atomic transition: Applications to laser frequency locking. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 5141. [Google Scholar] [CrossRef]
- Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Shaffer, J.P. Atom-Based Vector Microwave Electrometry Using Rubidium Rydberg Atoms in a Vapor Cell. Phys. Rev. Lett. 2013, 111, 063001. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.B.; Jiao, Y.C.; Hao, L.P.; Xue, Y.M.; Zhao, J.M.; Jia, S.T. Microwave electromagnetically induced transparency and Aulter-Townes spectrum of cesium Rydberg atom. Acta Phys. Sin. 2018, 9, 093201. [Google Scholar]
- Hansen, T.B.; Yaghjian, A.D. Planar near-field scanning in the time domain .1. Formulation. IEEE Trans. Antenn. Propag. 1994, 42, 1280. [Google Scholar] [CrossRef]
- Hansen, T.B.; Yaghjian, A.D. Planar near-field scanning in the time domain .2. Sampling theorems and computation schemes. IEEE Trans. Antenn. Propag. 1994, 42, 1292. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Fan, J.; Hao, L.; Spong, N.L.R.; Jiao, Y.; Zhao, J. Measurement of the Near Field Distribution of a Microwave Horn Using a Resonant Atomic Probe. Appl. Sci. 2019, 9, 4895. https://doi.org/10.3390/app9224895
Bai J, Fan J, Hao L, Spong NLR, Jiao Y, Zhao J. Measurement of the Near Field Distribution of a Microwave Horn Using a Resonant Atomic Probe. Applied Sciences. 2019; 9(22):4895. https://doi.org/10.3390/app9224895
Chicago/Turabian StyleBai, Jingxu, Jiabei Fan, Liping Hao, Nicholas L. R. Spong, Yuechun Jiao, and Jianming Zhao. 2019. "Measurement of the Near Field Distribution of a Microwave Horn Using a Resonant Atomic Probe" Applied Sciences 9, no. 22: 4895. https://doi.org/10.3390/app9224895
APA StyleBai, J., Fan, J., Hao, L., Spong, N. L. R., Jiao, Y., & Zhao, J. (2019). Measurement of the Near Field Distribution of a Microwave Horn Using a Resonant Atomic Probe. Applied Sciences, 9(22), 4895. https://doi.org/10.3390/app9224895