Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution over Seawater Channel
Abstract
:1. Introduction
2. Optical Transmission Characteristics of Seawater
3. Description of the Discrete-Modulated Underwater CV-QKD
- Step 1
- Alice firstly choose a random number k from the set with equal probability to modulate the weak coherent light to prepare coherent states , where is a positive number related to the modulation variance and satisfies , and then sends them to the seawater channel.
- Step 2
- Due to the absorption and scattering of seawater, the quantum signal transmitted in the seawater channel will be attenuated. According to the above analysis, the transmittance of seawater channel to quantum signal is in the case of short distance. On the premise of assuming that the additional noise introduced by the seawater channel is , which mainly contributes to the variation of surrounding environmental factors, the noise added from the seawater channel referred to the channel input can be expressed as .
- Step 3
- At Bob’s side, the imperfect detector with efficiency and electric noise is used to measure the received coherent states. The noise introduced by the detector referred to Bob’s input can be denoted as in shot-noise units and it satisfies
- Step 1
- Alice prepares two-mode entangled states with variance of , which can be defined as
- Step 2
- At Bob’s side, the electronic noise introduced by the imperfect detector causes the received quantum state to be transformed before measurement, and the transformed quantum state can be represented by the mode B. Bob decides to measure one quadrature with homodyne detector or two quadratures with heterodyne detector to get the variable () or both and of the mode B, and then decodes the information by the sign of his measurement results. The electronic noise can be modeled by an EPR state of variance . For homodyne detection, we have , and for heterodyne detection, .
- Step 3
- Bob sends the absolute value results to Alice through a classical channel, and they perform the post-processing procedures, including reverse reconciliation, privacy amplification and so on to share the final secret key.
4. Security Analysis and Numerical Simulation
4.1. Asymptotic Security Analysis
4.2. Finite-Size Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. The Calculation of the Symplectic Eigenvalues
References
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621–669. [Google Scholar] [CrossRef]
- Braunstein, S.L.; van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 2005, 77, 513–577. [Google Scholar] [CrossRef]
- Yang, J.; Xu, B.J.; Peng, X.; Guo, H. Four-state continuous-variable quantum key distribution with long secure distance. Phys. Rev. A 2012, 85, 052302. [Google Scholar] [CrossRef]
- Diamanti, E.; Lo, H.K.; Qi, B.; Yuan, Z.L. Practical challenges in quantum key distribution. NPJ Quantum Inform. 2016, 2, 16025. [Google Scholar] [CrossRef]
- Lodewyck, J.; Debuisschert, T.; Tualle-Brouri, R.; Grangier, P. Controlling excess noise in fiber-optics continuous-variable quantum key distribution. Phys. Rev. A 2005, 72, 050303. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 2013, 7, 378–381. [Google Scholar] [CrossRef]
- Huang, D.; Huang, P.; Lin, D.K.; Zeng, G.H. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 2016, 6, 19201. [Google Scholar] [CrossRef]
- Qu, Z.; Djordjevic, I.B. High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing. Opt. Express 2017, 25, 7919–7928. [Google Scholar] [CrossRef]
- Usenko, V.C.; Peuntinger, C.; Heim, B.; Gunthner, K.; Derkach, I.; Elser, D.; Marquardt, C.; Filip, R.; Leuchs, G. Stabilization of transmittance fluctuations caused by beam wandering in continuous-variable quantum communication over free-space atmospheric channels. Opt. Express 2018, 26, 31106–31115. [Google Scholar] [CrossRef]
- Hosseinidehaj, N.; Babar, Z.; Malaney, R.; Ng, S.X.; Hanzo, L. Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook. IEEE Commun. Surv. Tutor. 2019, 21, 881–919. [Google Scholar] [CrossRef]
- Leverrier, A.; Grangier, P. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 2009, 102, 180504. [Google Scholar] [CrossRef] [PubMed]
- Miao, E.L.; Han, Z.F.; Gong, S.S.; Zhang, T.; Diao, D.S.; Guo, G.C. Background noise of satellite-to-ground quantum key distribution. New J. Phys. 2005, 7, 215. [Google Scholar]
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Liao, Q.; Huang, D.; Guo, Y. Performance analysis of the satellite-to-ground continuous-variable quantum key distribution with orthogonal frequency division multiplexed modulation. Quantum Inf. Process. 2017, 18, 39. [Google Scholar] [CrossRef]
- Shi, P.; Zhao, S.C.; Gu, Y.J.; Li, W.D. Channel analysis for single photon underwater free space quantum key distribution. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2015, 32, 349–356. [Google Scholar] [CrossRef]
- Hill, A.D.; Christensen, B.; Kwiat, P.G. Advanced techniques for free-space optical quantum cryptography over water. SPIE 2016, 9739, 973911. [Google Scholar]
- Ji, L.; Gao, J.; Yang, A.L.; Feng, Z.; Lin, X.F.; Li, Z.G.; Jin, X.M. Towards quantum communications in free-space seawater. Opt. Express 2017, 25, 19795–19806. [Google Scholar] [CrossRef]
- Li, D.D.; Shen, Q.; Chen, W.; Li, Y.; Han, X.; Yang, K.X.; Xu, Y.; Lin, J.; Wang, C.Z.; Yong, H.L.; et al. Proof-of-principle demonstration of quantum key distribution with seawater channel: Towards space-to-underwater quantum communication. Opt. Commun. 2019, 452, 220–226. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, C.L.; Huang, P.; Li, J.W.; Zhang, L.; Huang, D.; Zeng, G.H. Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Phys. Rev. A 2018, 97, 052326. [Google Scholar] [CrossRef]
- Xie, C.L.; Guo, Y.; Wang, Y.J.; Huang, D.; Zhang, L. Security simulation of continuous-variable quantum key distribution over air-to-water channel using Monte Carlo method. Chin. Phys. Lett. 2018, 35, 19–22. [Google Scholar] [CrossRef]
- Kong, M.W.; Wang, J.L.; Chen, Y.F.; Ali, T.; Sarwar, R.; Qiu, Y.; Wang, S.L.; Han, J.; Xu, J. Security weaknesses of underwater wireless optical communication. Opt. Express 2017, 25, 21509–21518. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Song, Y.H.; Yu, X.Y.; Lin, A.; Kong, M.W.; Han, J.; Deng, N. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser. Opt. Express 2016, 24, 8097–8109. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, Y.; Zhou, Q.Q.; Zhou, B.; Wang, H.Y. Monte Carlo study on pulse response of underwater optical channel. Opt. Eng. 2012, 51, 066001. [Google Scholar] [CrossRef]
- Miya, T.; Terunuma, Y.; Hosaka, T.; Miyashita, T. Ultimate low-loss single-mode fiber at 1.55 um. Electron. Lett. 1979, 15, 106–108. [Google Scholar] [CrossRef]
- Richardson, D.J. New optical fibres for high-capacity optical communications. Philos. Trans. 2016, 374, 20140441. [Google Scholar] [CrossRef]
- Huang, D.; Huang, P.; Wang, T.; Li, H.S.; Zhou, Y.M.; Zeng, G.H. Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A 2016, 94, 032305. [Google Scholar] [CrossRef]
- Zhang, H.; Ruan, X.C.; Wu, X.D.; Zhang, L.; Guo, Y.; Huang, D. Plug-and-play unidimensional continuous-variable quantum key distribution. Quantum Inf. Process. 2019, 18, 128. [Google Scholar] [CrossRef]
- Zeng, Z.Q.; Fu, S.; Zhang, H.H.; Dong, Y.H.; Cheng, J.L. A survey of underwater optical wireless communications. IEEE. Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Tarantino, S.; Cozzolino, D.; Rottwitt, K.; Bacco, D. Feasibility of quantum communications in aquatic scenario. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018; pp. 1–2. [Google Scholar]
- Ma, H.X.; Huang, P.; Bai, D.Y.; Wang, T.; Wang, S.Y.; Bao, W.S.; Zeng, G.H. Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 2019, 99, 022322. [Google Scholar] [CrossRef]
- Becir, A.; El-Orany, F.A.A.; Wahiddin, M.R.B. Continuous-variable quantum key distribution protocols with eight-state discrete modulation. Int. J. Quantum Inf. 2012, 10, 1250004. [Google Scholar] [CrossRef]
- Fang, J.; Lu, Y.; Huang, P.; He, G.Q.; Zeng, G.H. Discretely modulated continuous-variable quantum key distribution with a nondeterministic noiseless amplifier. Int. J. Quantum Inf. 2013, 11, 1350037. [Google Scholar] [CrossRef]
- Guo, Y.; Li, R.J.; Liao, Q.; Zhou, J.; Huang, D. Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier. Phys. Lett. A 2018, 382, 372–381. [Google Scholar] [CrossRef]
- Shen, Y.; Zou, H.X.; Tian, L.; Chen, P.X.; Yuan, J.M. Experimental study on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 2010, 82, 022317. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; Grangier, P. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 2011, 83, 042312. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, L.; Usenko, V.C.; Filip, R. Long-distance continuous-variable quantum key distribution with efficient channel estimation. Phys. Rev. A 2014, 90, 062310. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Q.; Huang, C.H. Noise-enhanced CVQKD with untrusted source. Mod. Phys. Lett. B 2017, 31, 1750143. [Google Scholar] [CrossRef]
- Leverrier, A.; Grosshans, F.; Grangier, P. Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 2010, 81, 062343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Zhang, Y.C.; Zhao, Y.J.; Wang, X.Y.; Yu, S.; Guo, H. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2017, 96, 042334. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wang, X.Y.; Li, J.Q.; Li, Y.M. Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions. Opt. Express 2017, 25, 27995–28009. [Google Scholar] [CrossRef]
- Ghorai, S.; Grangier, P.; Diamanti, E.; Leverrier, A. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X 2019, 9, 021059. [Google Scholar] [CrossRef] [Green Version]
- Usenko, V.C.; Filip, R. Trusted noise in continuous-variable quantum key distribution: a threat and a defense. Entropy 2016, 18, 20. [Google Scholar] [CrossRef] [Green Version]
Water Types | a (m) | b (m) | c (m) |
---|---|---|---|
Pure sea water | 0.0405 | 0.0025 | 0.043 |
Clear ocean water | 0.114 | 0.037 | 0.151 |
Coastal ocean water | 0.179 | 0.219 | 0.398 |
Turbid harbor water | 0.366 | 1.824 | 2.190 |
N | n | |||||||
---|---|---|---|---|---|---|---|---|
0.6 | 0.01 | 0.6 | 0.01 | 0.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, X.; Zhang, H.; Zhao, W.; Wang, X.; Li, X.; Guo, Y. Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution over Seawater Channel. Appl. Sci. 2019, 9, 4956. https://doi.org/10.3390/app9224956
Ruan X, Zhang H, Zhao W, Wang X, Li X, Guo Y. Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution over Seawater Channel. Applied Sciences. 2019; 9(22):4956. https://doi.org/10.3390/app9224956
Chicago/Turabian StyleRuan, Xinchao, Hang Zhang, Wei Zhao, Xiaoxue Wang, Xuan Li, and Ying Guo. 2019. "Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution over Seawater Channel" Applied Sciences 9, no. 22: 4956. https://doi.org/10.3390/app9224956
APA StyleRuan, X., Zhang, H., Zhao, W., Wang, X., Li, X., & Guo, Y. (2019). Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution over Seawater Channel. Applied Sciences, 9(22), 4956. https://doi.org/10.3390/app9224956