MSWI Bottom Ash Application to Resist Sulfate Attack on Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. MSWI Bottom Ash
2.1.2. Cement
2.1.3. Natural Sand and Crushed Stone
2.1.4. Mix Proportion Design
2.2. Combination Scheme
2.3. Experimental Methods
2.3.1. Mechanical Property Measurements
2.3.2. Concrete Porosity Measurements
2.3.3. Capillary Rise and Crystallization Tests
2.3.4. Solution Absorption Measurements
3. Results and Discussion
3.1. Strength Properties of Mortar and Concrete
3.2. Concrete Durability
3.3. Intrusion of Concrete by Sodium Sulfate Solution
4. Conclusions
- (1)
- BA has some hydration activity due to its chemical constitution. Even if 30% of the cement is replaced with BA, the compressive and flexural strength values are still greater than 42% and 50%, respectively, of those of the mortar without BA.
- (2)
- The compressive strength of the concrete decreased with increasing BA content; this is due to the weak pozzolanic reactivity of BA. However, BA can improve the performance of concrete against sulphate attack because BA has a very high surface area and fills in the pores of concrete.
- (3)
- The coarse capillary porosity plays a key role in the capillary transport and crystallization of sulfate solution in concrete.
- (4)
- The W/C and BA content have a certain impact on the porosity of concrete and further affect the capillary height, absorption amount, and crystallization rate of sulfate solution in concrete.
Author Contributions
Funding
Conflicts of Interest
References
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
- Loginova, E.; Volkov, D.S.; van de Wouw, P.M.F.; Florea, M.V.A.; Brouwers, H.J.H. Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash. J. Clean. Prod. 2019, 207, 866–874. [Google Scholar] [CrossRef]
- Trindade, A.B.; Palacio, J.C.E.; González, A.M.; Orozco, D.J.R.; Lora, E.E.S.; Renó, M.L.G.; del Olmo, O.A. Advanced exergy analysis and environmental assesment of the steam cycle of an incineration system of municipal solid waste with energy recovery. Energy Convers. Manag. 2018, 157, 195–214. [Google Scholar] [CrossRef]
- Panepinto, D.; Zanetti, M.C. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration. Waste Manag. 2018, 73, 332–341. [Google Scholar] [CrossRef]
- Del Valle-Zermeño, R.; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag. 2013, 33, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of incineration MSW ash: A review. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef]
- Gagg, C.R. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Najjar, M.F.; Nehdi, M.L.; Soliman, A.M.; Azabi, T.M. Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack. Constr. Build. Mater. 2017, 137, 141–152. [Google Scholar] [CrossRef]
- Divsholi, B.S.; Lim, T.Y.D.; Teng, S. Durability properties and microstructure of ground granulated blast furnace slag cement concrete. Int. J. Concr. Struct. Mater. 2014, 8, 157–164. [Google Scholar] [CrossRef]
- Duan, P.; Shui, Z.; Chen, W.; Shen, C. Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials. J. Mater. Res. Technol. 2013, 2, 52–59. [Google Scholar] [CrossRef]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.M.; Roussel, N.; Divet, L.; de Lacaillerie, J.B.D.E. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- Li, C.; Wu, M.; Chen, Q.; Jiang, Z. Chemical and mineralogical alterations of concrete subjected to chemical attacks in complex underground tunnel environments during 20–36 years. Cem. Concr. Compos. 2018, 86, 139–159. [Google Scholar] [CrossRef]
- Bassuoni, M.T.; Rahman, M.M. Response of concrete to accelerated physical salt attack exposure. Cem. Concr. Res. 2016, 79, 395–408. [Google Scholar] [CrossRef]
- Khan, R.A.; Ganesh, A. The effect of coal bottom ash (CBA) on mechanical and durability characteristics of concrete. J. Build. Mater. Struct. 2016, 3, 31–42. [Google Scholar]
- Wang, D.; Zhou, X.; Meng, Y.; Chen, Z. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Constr. Build. Mater. 2017, 147, 398–406. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Sirini, P.; Testa, F. Properties of Portland cement-stabilised MSWI fly ashes. J. Hazard. Mater. 2001, 88, 123–138. [Google Scholar] [CrossRef]
- Fernández Bertos, M.; Li, X.; Simons, S.J.R.; Hills, C.D.; Carey, P.J. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem. 2004, 6, 428–436. [Google Scholar] [CrossRef]
- Chimenos, J.M.; Fernández, A.I.; Cervantes, A.; Miralles, L.; Fernández, M.A.; Espiell, F. Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Manag. 2005, 25, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Saikia, N.; Mertens, G.; Van Balen, K.; Elsen, J.; Van Gerven, T.; Vandecasteele, C. Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Constr. Build. Mater. 2015, 96, 76–85. [Google Scholar] [CrossRef]
- Caprai, V.; Schollbach, K.; Brouwers, H.J.H. Influence of hydrothermal treatment on the mechanical and environmental performances of mortars including MSWI bottom ash. Waste Manag. 2018, 78, 639–648. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization Administration. Common Portland Cement (GB 175-2007); Standards Press of China: Beijing, China, 2007. (In Chinese)
- Ministry of Transport of the People’s Republic of China. Test Methods of Cement and Concrete for Highway Engineering (JTG E30-2005); China Communications Press: Beijing, China, 2005. (In Chinese)
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for Technical Requirements and Test Method of Sand and Crushed Stone (or Gravel) for Ordinary Concrete (JGJ 52-2006); China Building Industry Press: Beijing, China, 2006. (In Chinese)
- The State Bureau of Quality and Technical Supervision. Method of Testing Cement-Determination of Strength (GB/T 17671-1999); Standards Press of China: Beijing, China, 1999. (In Chinese)
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for Mix Proportion Design of Ordinary Concrete (JGJ 55-2000); China Building Industry Press: Beijing, China, 2000. (In Chinese)
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Fly Ash Used for Cement and Concrete (GB T1596-2017); Standards Press of China: Beijing, China, 2017. (In Chinese)
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China; General Administration of Quality Supervision; Inspection and Quarantine of the People’s Republic of China. Standard for Test Method of Mechanical Properties on Ordinary Concrete (GB/T 50081-2002); China Building Industry Press: Beijing, China, 2002. (In Chinese)
- Ngala, V.T.; Page, C.L. Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem. Concr. Res. 1997, 27, 995–1007. [Google Scholar] [CrossRef]
- Lin, K.L.; Chang, W.C.; Lin, D.F. Pozzolanic characteristics of pulverized incinerator bottom ash slag. Constr. Build. Mater. 2008, 22, 324–329. [Google Scholar] [CrossRef]
- Li, X.G.; Lv, Y.; Ma, B.G.; Chen, Q.B.; Yin, X.B.; Jian, S.W. Utilization of municipal solid waste incineration bottom ash in blended cement. J. Clean. Prod. 2012, 32, 96–100. [Google Scholar] [CrossRef]
- Tang, P.; Florea, M.V.A.; Spiesz, P.; Brouwers, H.J.H. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr. Build. Mater. 2015, 83, 77–94. [Google Scholar] [CrossRef]
- Lin, K.L.; Wang, K.S.; Lin, C.Y.; Lin, C.H. The hydration properties of pastes containing municipal solid waste incinerator fly ash slag. J. Hazard. Mater. 2004, 109, 173–181. [Google Scholar] [CrossRef]
- Da Silva Magalhães, M.; Faleschini, F.; Pellegrino, C.; Brunelli, K. Cementing efficiency of electric arc furnace dust in mortars. Constr. Build. Mater. 2017, 157, 141–150. [Google Scholar] [CrossRef]
- Tang, P.; Florea, M.V.A.; Spiesz, P.; Brouwers, H.J.H. Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute. Cem. Concr. Compos. 2016, 70, 194–205. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Malhotra, V.M. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Kalla, P.; Misra, A.; Gupta, R.C.; Csetenyi, L.; Gahlot, V.; Arora, A. Mechanical and durability studies on concrete containing wollastonite–fly ash combination. Constr. Build. Mater. 2013, 40, 1142–1150. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rukzon, S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr. Build. Mater. 2008, 22, 1601–1606. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Compos. 2005, 27, 425–428. [Google Scholar] [CrossRef]
- Zakaria, M.; Cabrera, J.G. Performance and durability of concrete made with demolition waste and artificial fly ash-clay aggregates. Waste Manag. 1996, 16, 151–158. [Google Scholar] [CrossRef]
- Xie, Y.J.; Ma, K.L.; Long, G.C.; Shi, M.X. Influence of mineral admixture on chlorid ion permeability of concrete. J. Chin. Ceram. Soc. 2006, 34, 1345. (In Chinese) [Google Scholar]
Oxides | wt % |
---|---|
SiO2 | 48.41 |
CaO | 14.78 |
Al2O3 | 11.99 |
Na2O | 3.25 |
Fe2O3 | 5.40 |
SO3 | 1.86 |
K2O | 1.42 |
MgO | 1.78 |
TiO2 | 0.76 |
Property | Requirements | Test Result | Test Method | |
---|---|---|---|---|
Soundness | Qualified | GB 175-2007 [22] | Qualified | T0505-2005 (JTG E30-2005) [23] |
Initial setting time (min) | ≮45 | 97 | T0505-2005 (JTG E30-2005) [23] | |
Final setting time (min) | ≯390 | 180 | ||
Compressive strength (MPa) | 3d ≮ 17 | 28.6 | T0506-2005 (JTG E30-2005) [23] | |
28d ≮ 42.5 | 57.6 | |||
Flexural strength (MPa) | 3d ≮ 3.5 | 4.5 | ||
28d ≮ 6.5 | 9.0 | |||
Specific area (cm2/g) | 3000 | 3550 | T 050-2005 (JTG E30-2005) [23] |
Property | Natural Sand | Crushed Stone | Standard | ||
---|---|---|---|---|---|
Requirements | Test Result | Requirements | Test Result | ||
Fineness modulus | NA | 2.57 | — | — | JCJ 52-2006 [24] |
Flat–elongated particles (wt %) | — | — | ≯15 | 13.5 | |
Clay content (wt %) | ≯3.0 | 2.5 | ≯1.0 | 0.8 | |
Clay lump content (wt %) | ≯1.0 | 0.8 | ≯0.5 | 0.3 | |
Crushing value (wt %) | — | — | ≯16 | 12.8 | |
Ruggedness (wt %) | ≯8 | 6 | ≯8 | 5 | |
Apparent density (g/cm3) | NA | 2.586 | NA | 2.714 |
Material | Cement Mortar | Cement Concrete |
---|---|---|
Cement (kg/m3) | 450 | 330 |
Water (kg/m3) | 225 | 130 |
Natural sand (kg/m3) | 1350 | 614 |
Crushed stone (kg/m3) | — | 1248 |
Water-cement ratio (W/C) | 0.5 | 0.4 |
Material | Cement (kg/m3) | BA (kg/m3) | Material | Cement (kg/m3) | BA (kg/m3) | Cement/BA | Designation |
---|---|---|---|---|---|---|---|
Cement mortar | 405 | 45 | Cement concrete | 297 | 33 | 90:10 | C90BA10 |
382.5 | 67.5 | 280.5 | 49.5 | 85:15 | C85BA15 | ||
360 | 90 | 264 | 66 | 80:20 | C80BA20 | ||
337.5 | 112.5 | 247.5 | 82.5 | 75:25 | C75BA25 | ||
315 | 135 | 231 | 99 | 70:30 | C70BA30 |
Samples | Flexural Strength (MPa) | Compressive Strength (MPa) | Activity Index (%) | ||
---|---|---|---|---|---|
Average Value | Standard Deviation | Average Value | Standard Deviation | ||
Without BA | 9.0 | 0.8 | 57.1 | 2.9 | — |
C90BA10 | 5.2 | 0.3 | 34.6 | 2.6 | 61 |
C85BA15 | 5.0 | 0.2 | 32.0 | 2.7 | 56 |
C80BA20 | 5.0 | 0.5 | 27.6 | 2.2 | 48 |
C75BA25 | 4.8 | 0.4 | 26.8 | 2.5 | 47 |
C70BA30 | 4.5 | 0.3 | 24.4 | 2.1 | 43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Dong, Y.; Diao, J.; Zhang, G.; Chen, C.; Wu, D. MSWI Bottom Ash Application to Resist Sulfate Attack on Concrete. Appl. Sci. 2019, 9, 5091. https://doi.org/10.3390/app9235091
Cheng Y, Dong Y, Diao J, Zhang G, Chen C, Wu D. MSWI Bottom Ash Application to Resist Sulfate Attack on Concrete. Applied Sciences. 2019; 9(23):5091. https://doi.org/10.3390/app9235091
Chicago/Turabian StyleCheng, Yongzhen, Yun Dong, Jiakang Diao, Guoying Zhang, Chao Chen, and Danxi Wu. 2019. "MSWI Bottom Ash Application to Resist Sulfate Attack on Concrete" Applied Sciences 9, no. 23: 5091. https://doi.org/10.3390/app9235091
APA StyleCheng, Y., Dong, Y., Diao, J., Zhang, G., Chen, C., & Wu, D. (2019). MSWI Bottom Ash Application to Resist Sulfate Attack on Concrete. Applied Sciences, 9(23), 5091. https://doi.org/10.3390/app9235091