Application of Neural Networks to Explore Manufacturing Sales Prediction
Abstract
:1. Introduction
- Establish an accurate model;
- Understand external economic variables’ impacts on prediction models; and
- Establish a sales prediction framework for practical and feasible plastic injection machine markets to provide assistance for business management decisions.
2. Literature Review
2.1. Sales Prediction
2.2. Relevant Factors
2.3. Artificial Neural Network Prediction
3. Methodology
3.1. Pearson’s Correlation Coefficient
3.2. Artificial Neural Network Principles
3.3. Back-Propagation Network Algorithm
3.4. Performance Indicators
4. Results and Discussion
4.1. Pearson’s Correlation
4.2. Artificial Neural Network Prediction
- Set the number of input, hidden, and output layers; inertia coefficient, learning rate, learning cycles and other relevant parameters.
- Randomly determine initial BPN weights.
- Transfer to the BPN to start calculation.
- Correct join and bias weights according to errors.
- If not yet converged, repeat steps 3–5.
4.3. Performance Assessment
5. Conclusions
- The system should be extended to consider changes occurring for the different factors.
- Implementation required for more time than other prediction methods.
- Current accuracy is acceptable, but could be improved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taiwan Machinery Industry Association. 2018 Taiwan Plastic Rubber Machinery Industry Status; TAMI: Taipei, Taiwan, 2018; Available online: http://www.tami.org.tw/market/week3_20180727 (accessed on 5 November 2019).
- US Commercial Service. Plastics Materials and Machinery Export Guide. A Reference for U.S. Exporters in the Plastics Industry; US Commercial Service: Washington, DC, USA, 2018. Available online: https://www.trade.gov/industry/materials/Plastics%20Export%20Guide%202018_final.pdf (accessed on 5 November 2019).
- Bahrammirzaee, A. A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Comput. Appl. 2010, 19, 1165–1195. [Google Scholar] [CrossRef]
- Clemen, R.T. Combining forecasts: A review and annotated bibliography. Int. J. Forecast. 1989, 5, 559–583. [Google Scholar] [CrossRef]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef]
- Boussabaine, A.H. The use of artificial neural networks in construction management: A review. Constr. Manag. Econ. 1996, 14, 427–436. [Google Scholar] [CrossRef]
- Shin, K.S.; Lee, Y.J. A genetic algorithm application in bankruptcy prediction modeling. Expert Syst. Appl. 2002, 23, 321–328. [Google Scholar] [CrossRef]
- Tkáč, M.; Verner, R. Artificial neural networks in business: Two decades of research. Appl. Soft Comput. 2016, 38, 788–804. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, C. Sales forecast in e-commerce using convolutional neural network. arXiv 2017, arXiv:1708.07946. [Google Scholar]
- Croda, R.M.C.; Romero, D.E.G.; Morales, S.-O.C. Sales prediction through neural networks for a small dataset. Int. J. Interact. Multimed. Artif. Intell. 2019, 5, 35–41. [Google Scholar]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar]
- Pituch, K.A.; Stevens, J.P. Applied Multivariate Statistics for the Social Sciences: Analyses with SAS and IBM’s SPSS; Routledge: Abingdon-on-Thames, UK, 2015. [Google Scholar]
- Gupta, K.R. Business Statistics; Atlantic Publishers & Distributors: Delhi, India, 2017. [Google Scholar]
- Krivic, S.J.; Loh, A. Factors relating to brand loyalty of a fitness health club franchise business in Vienna, Austria. Int. Res. E-J. Bus. Econ. 2018, 2, 56. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Akerejola, W.O.; Okpara, E.U.; Ohikhena, P.; Emenike, P.O. Availability of infrastructure and adoption of point of sales of selected small and medium enterprises (SMEs) in Lagos State, Nigeria. Int. J. Acad. Res. Bus. Soc. Sci. 2019, 9, 137–150. [Google Scholar] [CrossRef]
- Hai, C.; Yan-Yan, C.; Wei, L.; Jun, W.; Shuai, Y.; Ju, G.; Yi, H.; Xiao-jing, D. Early warning analysis of electricity sales based on multi-factor correlation analysis. E3S Web Conf. EDP Sci. 2018, 53, 02007. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, D.; Fang, T.; Luo, T. The correlation between logistics industry and other industries: An evaluation of the empirical evidence from China. Asian J. Shipp. Logist. 2018, 34, 27–32. [Google Scholar] [CrossRef]
- Kong, Y.; Xie, C.; Zheng, S.; Jiang, P.; Guan, M.; Wang, F. Dynamic early warning method for major hazard installation systems in chemical industrial park. Complexity 2019, 2019, 6250483. [Google Scholar] [CrossRef]
- Christou, E. Branding social media in the travel industry. Procedia Soc. Behav. Sci. 2015, 175, 607–614. [Google Scholar] [CrossRef]
- Kung’u, J. Effect of liquidity management practices on profitability of manufacturing industry in Kenya. IOSR J. Econ. Financ. 2017, 8, 84–89. [Google Scholar] [CrossRef]
- Van Wassenhoven, M.; Goyens, M.; Henry, M.; Capieaux, E.; Devos, P. Nuclear magnetic resonance characterization of traditional homeopathically manufactured copper (Cuprum metallicum) and plant (Gelsemium sempervirens) medicines and controls. Homeopathy 2017, 106, 223–239. [Google Scholar] [CrossRef]
- Anh, T.; Thi, L.; Quang, H.; Thi, T. Factors influencing the effectiveness of internal control in cement manufacturing companies. Manag. Sci. Lett. 2020, 10, 133–142. [Google Scholar] [CrossRef]
- Kotler, P.; Scheff, J. Standing Room Only: Strategies for Marketing the Performing Arts; Harvard Business School Press: Brighton, MA, USA, 1997. [Google Scholar]
- Minsky, M.; Papert, S. Perceptron: An Introduction to Computational Geometry; The MIT Press: Cambridge, MA, USA, 1969; p. 2. [Google Scholar]
- Chang, P.-C.; Wang, Y.-W.; Tsai, C.-Y. Evolving neural network for printed circuit board sales forecasting. Expert Syst. Appl. 2005, 29, 83–92. [Google Scholar] [CrossRef]
- Au, K.-F.; Choi, T.-M.; Yu, Y. Fashion retail forecasting by evolutionary neural networks. Int. J. Prod. Econ. 2008, 114, 615–630. [Google Scholar] [CrossRef]
- Kong, J.; Martin, G. A backpropagation neural network for sales forecasting. In Proceedings of the ICNN’ 95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 2, pp. 1007–1011. [Google Scholar]
- Thiesing, F.M.; Vornberger, O. Sales forecasting using neural networks. In Proceedings of the International Conference on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997; pp. 2125–2128. [Google Scholar]
- Chen, C.-Y.; Lee, W.-I.; Kuo, H.-M.; Chen, C.-W.; Chen, K.-H. The study of a forecasting sales model for fresh food. Expert Syst. Appl. 2010, 37, 7696–7702. [Google Scholar] [CrossRef]
- Vhatkar, S.; Dias, J. Oral-care goods sales forecasting using artificial neural network model. Procedia Comput. Sci. 2016, 79, 238–243. [Google Scholar] [CrossRef]
- Mo, M.; Zhao, L.; Gong, Y.; Wu, Y. Research and application of BP neural network based on genetic algorithm optimization. Mod. Electron. Tech. 2018, 41, 41–44. [Google Scholar]
- Cincotti, S.; Gallo, G.; Ponta, L.; Raberto, M. Modeling and forecasting of electricity spot-prices: Computational intelligence vs classical econometrics. AI Commun. 2014, 27, 301–314. [Google Scholar]
- Ahlgren, P.; Jarneving, B.; Rousseau, R. Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. J. Am. Soc. Inf. Sci. Technol. 2003, 54, 550–560. [Google Scholar] [CrossRef]
- Werbos, P.J. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical Report No. Mar–Sep 1985; University of California San Diego: La Jolla, CA, USA, 1985. [Google Scholar]
- Horn, J.F.; Calise, A.J.; Prasad, J. Flight envelope cueing on a tilt-rotor aircraft using neural network limit prediction. J. Am. Helicopter Soc. 2001, 46, 23–31. [Google Scholar] [CrossRef]
- Wang, Y.C. Prediction of engine failure time using principal component analysis, categorical regression tree, and back propagation network. J. Ambient Intell. Humaniz. Comput. 2018, 1–9. [Google Scholar] [CrossRef]
- Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015, 7, 953. [Google Scholar]
- Pasini, A.; Potestà, S. Short-range visibility forecast by means of neural-network modelling: A case-study. Il Nuovo Cimento C 1995, 18, 505–516. [Google Scholar] [CrossRef]
- Pasini, A.; Pelino, V.; Potestà, S. A neural network model for visibility nowcasting from surface observations: Results and sensitivity to physical input variables. J. Geophys. Res. Atmos. 2001, 106, 14951–14959. [Google Scholar] [CrossRef]
- Xu, Y.; Goodacre, R. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Kohavi, R.A. study of cross-validation and bootstrap for accuracy estimation and model selection. Int. J. Conf. Articial Intell. 1995, 14, 1137–1145. [Google Scholar]
- Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Lewis, E. Control of body segment differentiation in Drosophila by the bithorax gene complex. In Genes, Development and Cancer: The Life and Work of Edward B. Lewis; Lipshitz, H.D., Ed.; Springer Science+Business: New York, NY, USA, 1982; pp. 239–253. [Google Scholar]
- TAITRA Home Page. Available online: https://www.taitraesource.com/default.asp (accessed on 5 November 2019).
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Lee, T.-S.; Chen, N.-J. Investigating the information content of non-cash-trading index futures using neural networks. Expert Syst. Appl. 2002, 22, 225–234. [Google Scholar] [CrossRef]
- Kuo, J.-T.; Hsieh, M.-H.; Lung, W.-S.; She, N. Using artificial neural network for reservoir eutrophication prediction. Ecol. Model. 2007, 200, 171–177. [Google Scholar] [CrossRef]
X6 Net Entry Rate of Employees in Manufacturing Industries and Service Industries (%) | X8 Coincident Indicators Excluding Trend Index | X11 Manufacturing Industry Sales Volume Index | X12 Customs Export Values ($NTD Billion) | X27 Business Turnover | X29 General Price Index | X31 The Total Value of Trade Imports ($NTD) | Sales Amount ($NTD) | |
---|---|---|---|---|---|---|---|---|
1 | 0.12 | 110.72 | 97.3 | 723.28 | 1,160,273 | 98.99 | 679,550 | 67,953,351 |
2 | −0.34 | 111.24 | 81.84 | 569.69 | 984,024 | 98.43 | 522,532 | 24,804,652 |
3 | 0.26 | 111.39 | 97.86 | 757.57 | 1,101,315 | 98.23 | 763,095 | 82,065,179 |
4 | 0.08 | 111.14 | 96.78 | 690.24 | 1,091,997 | 99.62 | 665,578 | 84,636,977 |
5 | 0.12 | 110.27 | 96.81 | 727.09 | 1,110,420 | 102.36 | 661,892 | 59,689,586 |
6 | 0.25 | 108.59 | 94.47 | 746.27 | 1,090,907 | 104.24 | 704,088 | 57,378,259 |
7 | 0.71 | 105.93 | 94.55 | 702.83 | 1,107,411 | 105.87 | 719,137 | 111,436,433 |
8 | 0.07 | 102.36 | 92.05 | 784.49 | 1,104,864 | 104.68 | 785,341 | 52,641,164 |
9 | −0.27 | 97.68 | 88.47 | 701.1 | 1,082,218 | 102.73 | 672,977 | 50,619,993 |
10 | −0.37 | 92.07 | 86.96 | 676.33 | 1,073,243 | 98.56 | 580,759 | 25,432,050 |
11 | −0.7 | 86.33 | 70.03 | 560.84 | 958,906 | 92.59 | 510,760 | 82,767,645 |
12 | −1.36 | 81.66 | 68.5 | 459.51 | 944,137 | 88.82 | 399,343 | 36,808,567 |
13 | −1.41 | 78.87 | 62.32 | 413.65 | 938,376 | 88.25 | 301,650 | 18,262,761 |
14 | −0.85 | 78.13 | 68.72 | 431.96 | 896,766 | 89.24 | 373,591 | 20,653,199 |
15 | −0.32 | 78.95 | 78.09 | 545.31 | 969,395 | 89.08 | 432,850 | 40,703,997 |
16 | −0.21 | 80.97 | 81.52 | 504.36 | 986,153 | 88.52 | 436,381 | 39,451,103 |
17 | −0.13 | 83.71 | 80.9 | 543.17 | 976,558 | 88.54 | 439,880 | 29,829,289 |
18 | 0.25 | 86.86 | 88 | 560.73 | 1,040,586 | 89.96 | 505,506 | 21,569,185 |
19 | 0.42 | 89.89 | 91.24 | 574.13 | 1,078,566 | 91.06 | 515,403 | 68,449,065 |
20 | 0.38 | 92.58 | 86.99 | 629.34 | 1,082,739 | 93.15 | 568,094 | 45,444,464 |
~ | ||||||||
100 | 0.01 | 96.48 | 97.19 | 720.25 | 1,129,508 | 84.26 | 565,035 | 50,847,793 |
101 | 0.07 | 97.29 | 101.78 | 763.61 | 1,150,372 | 85.07 | 649,604 | 83,251,179 |
102 | 0.08 | 98.2 | 101.96 | 743.41 | 1,178,038 | 85.33 | 627,467 | 59,205,118 |
103 | 0.48 | 99.13 | 101.2 | 776 | 1,186,582 | 84.81 | 657,570 | 94,401,114 |
104 | 0.1 | 100 | 105.38 | 780.01 | 1,198,745 | 83.89 | 653,520 | 56,923,071 |
105 | −0.06 | 100.78 | 98.41 | 712.91 | 1,192,628 | 84.03 | 574,549 | 72,765,826 |
106 | 0.1 | 101.44 | 101.75 | 840.86 | 1,221,370 | 84.72 | 701,613 | 54,305,574 |
107 | 0.18 | 101.81 | 104.94 | 801.18 | 1,236,081 | 85.2 | 664,895 | 78,899,175 |
108 | 0.12 | 101.81 | 105.54 | 820.74 | 1,261,626 | 86.51 | 665,533 | 92,900,118 |
109 | 0.06 | 101.39 | 97.23 | 757.13 | 1,224,804 | 87.14 | 645,628 | 58,716,581 |
110 | −0.09 | 100.72 | 89.06 | 702.8 | 1,037,538 | 86.63 | 599,181 | 93,628,196 |
111 | 0.21 | 100.07 | 107.95 | 792.48 | 1,195,296 | 85.88 | 670,891 | 48,821,852 |
112 | 0.11 | 99.63 | 95.37 | 738.98 | 1,149,976 | 85.09 | 654,942 | 55,235,186 |
113 | 0.12 | 99.54 | 101.97 | 769.31 | 1,187,775 | 83.98 | 665,412 | 43,872,675 |
114 | 0.19 | 99.87 | 105.53 | 777.74 | 1,217,628 | 83.84 | 602,507 | 54,494,222 |
115 | 0.62 | 100.43 | 102.42 | 823.94 | 1,217,436 | 84.25 | 660,763 | 67,840,954 |
116 | 0.14 | 101.1 | 109.34 | 840.25 | 1,264,341 | 84.87 | 667,526 | 77,709,509 |
117 | −0.03 | 101.66 | 105.08 | 869.47 | 1,263,093 | 85.64 | 668,974 | 71,531,514 |
118 | 0.12 | 101.97 | 103.39 | 832.34 | 1,266,194 | 86.12 | 674,863 | 57,053,528 |
119 | 0.21 | 102.13 | 105.42 | 869.41 | 1,278,629 | 86.54 | 691,787 | 55,927,346 |
120 | 0.12 | 102.1 | 104.98 | 884.84 | 1,275,362 | 86.72 | 701,060 | 94,772,146 |
Item | Indicator | Pearson Correlation | Hypothesis Test |
---|---|---|---|
X1 | Leading indicator composite index | 0.161 | 0.08 |
X2 | Leading indicator excluding trend index | 0.273 | 0.003 |
X3 | Export order trend index | −0.174 | 0.058 |
X4 | Total currency count M1B ($NTD Billion) | 0.033 | 0.718 |
X5 | Stock index | 0.123 | 0.184 |
X6 | Net entry rate of employees in manufacturing industries and service industries (%) | 0.399 | 0.000 |
X7 | Coincident indicator composite index | 0.217 | 0.018 |
X8 | Coincident indicators excluding trend index | 0.339 | 0.000 |
X9 | Industrial production index | 0.264 | 0.004 |
X10 | Enterprise total electricity consumption (109 kWh) | 0.207 | 0.024 |
X11 | Manufacturing industry sales volume index | 0.381 | 0.000 |
X12 | Customs export values ($NTD Billion) | 0.339 | 0.000 |
X13 | Import value of machinery and electrical equipment ($NTD Billion) | 0.273 | 0.003 |
X14 | Lagging indicator composite index | 0.116 | 0.21 |
X15 | Leading indicator excluding trend index | 0.076 | 0.411 |
X16 | Unemployment rate (%) | −0.115 | 0.214 |
X17 | Manufacturing unit output labor cost index | −0.236 | 0.010 |
X18 | Financial industry overnight interest rate | −0.031 | 0.741 |
X19 | Loan and investment for all financial institutions ($NTD Billion) | 0.009 | 0.925 |
X20 | Manufacturing inventory (103) | 0.243 | 0.008 |
X21 | Consumer confidence index | 0.225 | 0.014 |
X22 | National income | 0.011 | 0.902 |
X23 | Consumer price index | 0.042 | 0.652 |
X24 | Industrial production index | 0.306 | 0.001 |
X25 | Manufacturing industry production index | 0.297 | 0.001 |
X26 | Plastic products manufactured per worker per month | 0.288 | 0.002 |
X27 | Business turnover | 0.368 | 0.000 |
X28 | Labor productivity index for plastic products manufacturing | 0.151 | 0.102 |
X29 | General price index | 0.323 | 0.000 |
X30 | Export orders (machinery) | 0.278 | 0.002 |
X31 | The total value of trade imports ($NTD) | 0.441 | 0.000 |
X32 | Commercial container unloading capacity (equivalent to 20 containers) | −0.075 | 0.419 |
X33 | Freight tonnage (metric ton) | 0.254 | 0.005 |
X34 | $USD spot exchange rate—exchange rate between bank and customer—buy ($NTD) | −0.430 | 0.000 |
X35 | $USD spot exchange rate—exchange rate between bank and customer—sell ($NTD) | −0.430 | 0.000 |
Item | X6 | X8 | X11 | X12 | X27 | X29 | X31 |
---|---|---|---|---|---|---|---|
Pearson correlation | 0.399 | 0.339 | 0.381 | 0.339 | 0.368 | 0.323 | 0.441 |
p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
All Runs | Training Minimum | Training Standard Deviation |
---|---|---|
Average of Minimum MSEs | 0.025882721 | 0.000802464 |
Average of Final MSEs | 0.025882721 | 0.000802464 |
Performance | Y |
---|---|
RMSE | 24858562.25 |
NRMSE | 0.169958497 |
MAE | 20464935.83 |
NMAE | 0.139919183 |
Min Abs Error | 1192904.849 |
Max Abs Error | 55346814.96 |
r | −0.041973132 |
Score | 44.05494133 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.-H.; Lin, G.-H.; Wang, Y.-C. Application of Neural Networks to Explore Manufacturing Sales Prediction. Appl. Sci. 2019, 9, 5107. https://doi.org/10.3390/app9235107
Wang P-H, Lin G-H, Wang Y-C. Application of Neural Networks to Explore Manufacturing Sales Prediction. Applied Sciences. 2019; 9(23):5107. https://doi.org/10.3390/app9235107
Chicago/Turabian StyleWang, Po-Hsun, Gu-Hong Lin, and Yu-Cheng Wang. 2019. "Application of Neural Networks to Explore Manufacturing Sales Prediction" Applied Sciences 9, no. 23: 5107. https://doi.org/10.3390/app9235107
APA StyleWang, P. -H., Lin, G. -H., & Wang, Y. -C. (2019). Application of Neural Networks to Explore Manufacturing Sales Prediction. Applied Sciences, 9(23), 5107. https://doi.org/10.3390/app9235107