Learning and Comfort in Human–Robot Interaction: A Review
Abstract
:1. Introduction
2. Teaching and Learning in Human–Robot Interaction
2.1. Robot Learning from Demonstration
2.2. Human Teaching Approaches
2.2.1. Kinesthetic-Based Teaching
2.2.2. Joystick-Based Teaching
2.2.3. Immersive Teleoperation Scenarios Teaching
2.2.4. Wearable-Sensor-Based Teaching
2.2.5. Natural-Language-Based Teaching
2.2.6. Vision-Based Teaching
2.3. Robot Learning Approaches
2.3.1. Kinesthetic-Based Learning
2.3.2. One-Shot Learning
2.3.3. Multi Shot Learning
2.3.4. Vision-Based Learning
2.3.5. Reinforcement-Learning-Based Approach
2.3.6. Inverse-Reinforcement-Learning-Based Approach
2.3.7. Skill-Tree-Construction-Based Approach
2.3.8. Syntactics-Based Approach
2.3.9. Semantic-Networks-Based Learning
2.3.10. Neural-Models-Based Learning
2.3.11. Procedural-Memory-Based Learning
2.4. Comparison and Discussion of Different Approaches in Human–Robot Teaching–Learning Processes
3. Several Issues in Human–Robot Teaching–Learning Processes
3.1. Extraction
3.2. Real-Time
3.3. Correspondence
3.4. Execution
3.5. Safety
4. What Affects Human Comfort in Human–Robot Interaction?
4.1. Robot Response Speed
4.2. Robot Movement Trajectory
4.3. Human–Robot Proximity
4.4. Robot Object-Manipulating Fluency
4.5. Human Coding Efforts
4.6. Robot Sociability
4.7. Factors Outside Human–Robot Teams
5. How to Improve Human Comfort in Human–Robot Interaction?
5.1. Human Comfort Measurement
5.1.1. Self-Evaluation Approach
5.1.2. Physiological Approach
5.2. Measures to Improve Human Acceptance of Robots
5.3. Measures to Improve Human Comfort
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thoben, K.-D.; Wiesner, S.; Wuest, T. “Industrie 4.0” and smart manufacturing—A review of research issues and application examples. Int. J. Autom. Technol. 2017, 11, 4–16. [Google Scholar] [CrossRef]
- Wannasuphoprasit, W.; Akella, P.; Peshkin, M.; Colgate, J.E. Cobots: A novel material handling technology. In Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 15–20 November 1998. [Google Scholar]
- Krüger, J.; Lien, T.K.; Verl, A. Cooperation of human and machines in assembly lines. Cirp Ann. Manuf. Technol. 2009, 58, 628–646. [Google Scholar]
- Wang, W.; Chen, Y.; Diekel, Z.M.; Jia, Y. Cost functions based dynamic optimization for robot action planning. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 277–278. [Google Scholar]
- Léger, J.; Angeles, J. Off-line programming of six-axis robots for optimum five-dimensional tasks. Mech. Mach. Theory 2016, 100, 155–169. [Google Scholar] [CrossRef]
- Billard, A.; Calinon, S.; Dillmann, R.; Schaal, S. Robot programming by demonstration. In Springer Handbook of Robotics; Springer: Berlin, Germany, 2008; pp. 1371–1394. [Google Scholar]
- Wang, W.; Li, R.; Chen, Y.; Diekel, Z.; Jia, Y. Facilitating human-robot collaborative tasks by teaching-learning-collaboration from human demonstrations. IEEE Trans. Autom. Sci. Eng. 2018, 16, 640–653. [Google Scholar] [CrossRef]
- Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009, 57, 469–483. [Google Scholar] [CrossRef]
- Wang, W.; Li, R.; Diekel, Z.; Jia, Y. Controlling object hand-over in human-robot collaboration via natural wearable sensing. IEEE Trans. Hum. Mach. Syst. 2019, 49, 59–71. [Google Scholar] [CrossRef]
- Park, C.; Ondřej, J.; Gilbert, M.; Freeman, K.; Sullivan, C.O. Hi robot: Human intention-aware robot planning for safe and efficient navigation in crowds. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3320–3326. [Google Scholar]
- Wang, W.; Li, R.; Chen, Y.; Jia, Y. Human intention prediction in human-robot collaborative tasks. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 279–280. [Google Scholar]
- Wang, W.; Liu, N.; Li, R.; Chen, Y.; Jia, Y. Hucom: A model for human comfort estimation in human-robot collaboration. In Proceedings of the 2018 Dynamic Systems and Control (DSC) Conference, Atlanta, GA, USA, 30 September–3 October 2018. [Google Scholar]
- Mead, R.; Matarić, M.J. Proxemics and performance: Subjective human evaluations of autonomous sociable robot distance and social signal understanding. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 5984–5991. [Google Scholar]
- Gruver, W.A.; Soroka, B.I.; Craig, J.J.; Turner, T.L. Industrial robot programming languages: A comparative evaluation. Ieee Trans. Syst. Man Cybern. 1984, SMC-14, 565–570. [Google Scholar] [CrossRef]
- Neto, P.; Pires, J.N.; Moreira, A.P. Cad-based off-line robot programming. In Proceedings of the 2010 IEEE Conference on Robotics Automation and Mechatronics (RAM), Singapore, 28–30 June 2010; pp. 516–521. [Google Scholar]
- Billard, A.; Grollman, D. Robot learning by demonstration. Scholarpedia 2013, 8, 3824–3837. [Google Scholar] [CrossRef]
- Skubic, M.; Volz, R.A. Acquiring robust, force-based assembly skills from human demonstration. Ieee Trans. Robot. Autom. 2000, 16, 772–781. [Google Scholar] [CrossRef]
- Ferreira, M.; Costa, P.; Rocha, L.; Moreira, A.P. Stereo-based real-time 6-dof work tool tracking for robot programing by demonstration. Int. J. Adv. Manuf. Technol. 2014, 85, 1–13. [Google Scholar] [CrossRef]
- Jia, Y.; She, L.; Cheng, Y.; Bao, J.; Chai, J.Y.; Xi, N. Program robots manufacturing tasks by natural language instructions. In Proceedings of the 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016; pp. 633–638. [Google Scholar]
- Billard, A.G.; Calinon, S.; Guenter, F. Discriminative and adaptive imitation in uni-manual and bi-manual tasks. Robot. Auton. Syst. 2006, 54, 370–384. [Google Scholar] [CrossRef]
- Nagata, F.; Watanabe, K.; Kiguchi, K.; Tsuda, K.; Kawaguchi, S.; Noda, Y.; Komino, M. Joystick teaching system for polishing robots using fuzzy compliance control. In Proceedings of the 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Banff, AB, Canada, 29 July–1 August 2001; pp. 362–367. [Google Scholar]
- Katagami, D.; Yamada, S. Real robot learning with human teaching. In Proceedings of the 4th Japan-Australia Joint Workshop on Intelligent and Evolutionary Systems, Hayama, Japan, 31 October–2 November 2000; pp. 263–270. [Google Scholar]
- Nose, H.; Kawabata, K.; Suzuki, Y. Method of Teaching a Robot. Google Patents 1991. [Google Scholar]
- Calinon, S.; Evrard, P.; Gribovskaya, E.; Billard, A.; Kheddar, A. Learning collaborative manipulation tasks by demonstration using a haptic interface. In Proceedings of the 2009 International Conference on Advanced Robotics (ICAR 2009), Munich, Germany, 22–26 June 2009; pp. 1–6. [Google Scholar]
- Peternel, L.; Babič, J. Humanoid robot posture-control learning in real-time based on human sensorimotor learning ability. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 5329–5334. [Google Scholar]
- Wang, W.; Li, R.; Diekel, Z.M.; Jia, Y. Hands-free maneuvers of robotic vehicles via human intentions understanding using wearable sensing. J. Robot. 2018, 2018, 4546094. [Google Scholar] [CrossRef]
- Javaid, M.; Žefran, M.; Yavolovsky, A. Using pressure sensors to identify manipulation actions during human physical interaction. In Proceedings of the 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, 31 August–4 September 2015; pp. 670–675. [Google Scholar]
- Aleotti, J.; Caselli, S. Grasp programming by demonstration in virtual reality with automatic environment reconstruction. Virtual Real. 2012, 16, 87–104. [Google Scholar] [CrossRef]
- Calinon, S.; Billard, A. Incremental learning of gestures by imitation in a humanoid robot. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Washington, DC, USA, 9–11 March 2007; pp. 255–262. [Google Scholar]
- Lauria, S.; Bugmann, G.; Kyriacou, T.; Klein, E. Mobile robot programming using natural language. Robot. Auton. Syst. 2002, 38, 171–181. [Google Scholar] [CrossRef]
- She, L.; Cheng, Y.; Chai, J.Y.; Jia, Y.; Yang, S.; Xi, N. Teaching robots new actions through natural language instructions. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 868–873. [Google Scholar]
- Misra, D.K.; Sung, J.; Lee, K.; Saxena, A. Tell me dave: Context-sensitive grounding of natural language to manipulation instructions. Int. J. Robot. Res. 2015, 0278364915602060. [Google Scholar] [CrossRef]
- Bodenhagen, L.; Fugl, A.R.; Jordt, A.; Willatzen, M.; Andersen, K.A.; Olsen, M.M.; Koch, R.; Petersen, H.G.; Krüger, N. An adaptable robot vision system performing manipulation actions with flexible objects. IEEE Trans. Autom. Sci. Eng. 2014, 11, 749–765. [Google Scholar] [CrossRef]
- Kormushev, P.; Calinon, S.; Caldwell, D.G. Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Adv. Robot. 2011, 25, 581–603. [Google Scholar] [CrossRef]
- Manschitz, S.; Kober, J.; Gienger, M.; Peters, J. Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. Robot. Auton. Syst. 2015, 74, 97–107. [Google Scholar] [CrossRef]
- Wu, Y.; Demiris, Y. Towards one shot learning by imitation for humanoid robots. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, 3–8 May 2010; pp. 2889–2894. [Google Scholar]
- Lee, D.; Ott, C. Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Auton. Robot. 2011, 31, 115–131. [Google Scholar] [CrossRef]
- Das, N.; Prakash, R.; Behera, L. Learning object manipulation from demonstration through vision for the 7-dof barrett wam. In Proceedings of the 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, 8–10 January 2016; pp. 391–396. [Google Scholar]
- Koppula, H.S.; Gupta, R.; Saxena, A. Learning human activities and object affordances from rgb-d videos. Int. J. Robot. Res. 2013, 32, 951–970. [Google Scholar] [CrossRef]
- Bagnell, J.A.; Schneider, J.G. Proceedings of the Autonomous helicopter control using reinforcement learning policy search methods. In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (ICRA 2001), Seoul, Korea, 21–26 May 2001; pp. 1615–1620. [Google Scholar]
- Ghadirzadeh, A.; Bütepage, J.; Maki, A.; Kragic, D.; Björkman, M. A sensorimotor reinforcement learning framework for physical human-robot interaction. arXiv 2016, arXiv:1607.07939. [Google Scholar]
- Yahya, A.; Li, A.; Kalakrishnan, M.; Chebotar, Y.; Levine, S. Collective robot reinforcement learning with distributed asynchronous guided policy search. arXiv 2016, arXiv:1610.00673. [Google Scholar]
- Bogert, K.; Doshi, P. Multi-robot inverse reinforcement learning under occlusion with state transition estimation. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, Istanbul, Turkey, 4–8 May 2015; pp. 1837–1838. [Google Scholar]
- Xia, C.; El Kamel, A. Neural inverse reinforcement learning in autonomous navigation. Robot. Auton. Syst. 2016, 84, 1–14. [Google Scholar] [CrossRef]
- Shiarlis, K.; Messias, J.; Whiteson, S. Inverse reinforcement learning from failure. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, Singapore, 9–13 May 2016; pp. 1060–1068. [Google Scholar]
- Konidaris, G.; Kuindersma, S.; Grupen, R.; Barto, A. Robot learning from demonstration by constructing skill trees. Int. J. Robot. Res. 2010, 31, 360–375. [Google Scholar] [CrossRef]
- Konidaris, G.; Kuindersma, S.; Grupen, R.; Barreto, A.S. Constructing skill trees for reinforcement learning agents from demonstration trajectories. In Proceedings of the 23rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010; pp. 1162–1170. [Google Scholar]
- Lee, K.; Su, Y.; Kim, T.-K.; Demiris, Y. A syntactic approach to robot imitation learning using probabilistic activity grammars. Robot. Auton. Syst. 2013, 61, 1323–1334. [Google Scholar] [CrossRef]
- Fonooni, B.; Hellström, T.; Janlert, L.-E. Learning high-level behaviors from demonstration through semantic networks. In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (ICAART), Vilamoura, Portugal, 6–8 February 2012; pp. 419–426. [Google Scholar]
- Kuipers, B.; Froom, R.; Lee, W.-Y.; Pierce, D. The semantic hierarchy in robot learning. In Robot Learning; Springer: New York, NY, USA, 1993; pp. 141–170. [Google Scholar]
- Li, G.; Zhu, C.; Du, J.; Cheng, Q.; Sheng, W.; Chen, H. Robot semantic mapping through wearable sensor-based human activity recognition. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 5228–5233. [Google Scholar]
- Oztop, E.; Arbib, M.A. Schema design and implementation of the grasp-related mirror neuron system. Biol. Cybern. 2002, 87, 116–140. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Fogassi, L.; Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2001, 2, 661–670. [Google Scholar] [CrossRef]
- Sauser, E.L.; Billard, A.G. Biologically inspired multimodal integration: Interferences in a human-robot interaction game. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 5619–5624. [Google Scholar]
- Yoo, Y.-H.; Kim, J.-H. Procedural memory learning from demonstration for task performance. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Hong Kong, China, 9–12 October 2015; pp. 2435–2440. [Google Scholar]
- Dautenhahn, K.; Walters, M.; Woods, S.; Koay, K.L.; Nehaniv, C.L.; Sisbot, A.; Alami, R.; Siméon, T. How may i serve you? A robot companion approaching a seated person in a helping context. In Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, Salt Lake City, UT, USA, 2–3 March 2006; pp. 172–179. [Google Scholar]
- Mitsunaga, N.; Smith, C.; Kanda, T.; Ishiguro, H.; Hagita, N. Adapting robot behavior for human—Robot interaction. IEEE Trans. Robot. 2008, 24, 911–916. [Google Scholar] [CrossRef]
- Sisbot, E.A.; Marin-Urias, L.F.; Alami, R.; Simeon, T. A human aware mobile robot motion planner. IEEE Trans. Robot. 2007, 23, 874–883. [Google Scholar] [CrossRef]
- Dragan, A.D.; Bauman, S.; Forlizzi, J.; Srinivasa, S.S. Effects of robot motion on human-robot collaboration. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland, OR, USA, 2–5 March 2015; pp. 51–58. [Google Scholar]
- Mumm, J.; Mutlu, B. Human-robot proxemics: Physical and psychological distancing in human-robot interaction. In Proceedings of the 6th international conference on Human-robot interaction, Lausanne, Switzerland, 6–9 March 2011; pp. 331–338. [Google Scholar]
- Walters, M.L.; Dautenhahn, K.; Te Boekhorst, R.; Koay, K.L.; Kaouri, C.; Woods, S.; Nehaniv, C.; Lee, D.; Werry, I. The influence of subjects’ personality traits on personal spatial zones in a human-robot interaction experiment. In Proceedings of the ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, Nashville, TN, USA, 13–15 August 2005; pp. 347–352. [Google Scholar]
- Takayama, L.; Pantofaru, C. Influences on proxemic behaviors in human-robot interaction. In Proceedings of the IROS 2009, IEEE/RSJ International Conference on Intelligent Robots and Systems, Louis, MO, USA, 11–15 October 2009; pp. 5495–5502. [Google Scholar]
- Stark, J.; Mota, R.R.; Sharlin, E. Personal space intrusion in human-robot collaboration. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 05–08 March 2018; pp. 245–246. [Google Scholar]
- Hoffman, G. Evaluating fluency in human-robot collaboration. In Proceedings of the International Conference on Human-Robot Interaction (HRI), Tokyo, Japan, 3–6 March 2013; pp. 1–8. [Google Scholar]
- Lasota, P.A.; Shah, J.A. Analyzing the effects of human-aware motion planning on close-proximity human–robot collaboration. Hum. Factors 2015, 57, 21–33. [Google Scholar] [CrossRef]
- Cakmak, M.; Srinivasa, S.S.; Lee, M.K.; Kiesler, S.; Forlizzi, J. Using spatial and temporal contrast for fluent robot-human hand-overs. In Proceedings of the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, 6–9 March 2011; pp. 489–496. [Google Scholar]
- Stark, J.; Mota, R.R.; Sharlin, E. Personal Space Intrusion in Human-Robot Collaboration; Science Research & Publications: New York, NY, USA, 2017. [Google Scholar]
- Salem, M.; Lakatos, G.; Amirabdollahian, F.; Dautenhahn, K. Would you trust a (faulty) robot? Effects of error, task type and personality on human-robot cooperation and trust. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland, OR, USA, 2–5 March 2015; pp. 141–148. [Google Scholar]
- Ma, L.M.; Fong, T.; Micire, M.J.; Kim, Y.K.; Feigh, K. Human-robot teaming: Concepts and components for design. In Field and Service Robotics; Springer: Basel, Switzerland, 2018; pp. 649–663. [Google Scholar]
- Kuijt-Evers, L.F.; Groenesteijn, L.; de Looze, M.P.; Vink, P. Identifying factors of comfort in using hand tools. Appl. Ergon. 2004, 35, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, T.; Wu, H.; Zacharias, J. Outdoor human comfort in an urban climate. Build. Environ. 2004, 39, 297–305. [Google Scholar] [CrossRef]
- Xue, P.; Mak, C.; Cheung, H. The effects of daylighting and human behavior on luminous comfort in residential buildings: A questionnaire survey. Build. Environ. 2014, 81, 51–59. [Google Scholar] [CrossRef]
- Mahmoud, A.H.A. Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. Build. Environ. 2011, 46, 2641–2656. [Google Scholar] [CrossRef]
- Zhang, L.; Helander, M.G.; Drury, C.G. Identifying factors of comfort and discomfort in sitting. Hum. Factors 1996, 38, 377–389. [Google Scholar] [CrossRef]
- Robinette, P.; Howard, A.M.; Wagner, A.R. Effect of robot performance on human–robot trust in time-critical situations. IEEE Trans. Hum. Mach. Syst. 2017, 47, 425–436. [Google Scholar] [CrossRef]
- Gao, F.; Clare, A.S.; Macbeth, J.C.; Cummings, M. Modeling the Impact of Operator Trust on Performance in Multiple Robot Control; AAAI: Menlo Park, CA, USA, 2013. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Allen, I.E.; Seaman, C.A. Likert scales and data analyses. Quadratic. Program. 2007, 40, 64. [Google Scholar]
- Li, D.; Menassa, C.C.; Kamat, V.R. Personalized human comfort in indoor building environments under diverse conditioning modes. Build. Environ. 2017, 126, 304–317. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chen, L.-J.; Chen, Y.-Y.; Lee, W.-C. A Comfort Measuring System for Public Transportation Systems Using Participatory Phone Sensing. Acm Phonesense. 2010. Available online: https://www.iis.sinica.edu.tw/papers/cclljj/11583-F.pdf (accessed on 2 July 2019).
- Andrews, S.; Ellis, D.A.; Shaw, H.; Piwek, L. Beyond self-report: Tools to compare estimated and real-world smartphone use. PLoS ONE 2015, 10, e0139004. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Lan, P.; Looney, C. A probabilistic framework for modeling and real-time monitoring human fatigue. IEEE Trans. Syst. ManCybern. Part A Syst. Hum. 2006, 36, 862–875. [Google Scholar]
- Bořil, H.; Sangwan, A.; Hasan, T.; Hansen, J.H. Automatic excitement-level detection for sports highlights generation. In Proceedings of the Eleventh Annual Conference of the International Speech Communication Association, Chiba, Japan, 26–30 September 2010. [Google Scholar]
- Ali, M.; Al Machot, F.; Mosa, A.H.; Kyamakya, K. Cnn based subject-independent driver emotion recognition system involving physiological signals for adas. In Advanced Microsystems for Automotive Applications 2016; Springer: Berlin, Germany, 2016; pp. 125–138. [Google Scholar]
- Lee, H.-M.; Kim, D.-J.; Yang, H.-K.; Kim, K.-S.; Lee, J.-W.; Cha, E.-J.; Kim, K.-A. Human sensibility evaluation using photoplethysmogram (ppg). In Proceedings of the 2009 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS’09), Fukuoka, Japan, 16–19 March 2009; pp. 149–153. [Google Scholar]
- Salomon, R.; Lim, M.; Pfeiffer, C.; Gassert, R.; Blanke, O. Full body illusion is associated with widespread skin temperature reduction. Front. Behav. Neurosci. 2013, 7, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L. A multi-Sensor Intelligent Assistance System for Driver Status Monitoring and Intention Prediction. Ph.D. Thesis, Technische Universität Kaiserslautern, Kaiserslautern, Germany, 16 January 2017. [Google Scholar]
- Ackermann, P.; Kohlschein, C.; Bitsch, J.A.; Wehrle, K.; Jeschke, S. Eeg-based automatic emotion recognition: Feature extraction, selection and classification methods. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–17 September 2016; pp. 1–6. [Google Scholar]
- Heerink, M.; Krose, B.; Evers, V.; Wielinga, B. Measuring acceptance of an assistive social robot: A suggested toolkit. In Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2009), Toyama, Japan, 27 September–2 October 2009; pp. 528–533. [Google Scholar]
- Heerink, M.; Kröse, B.; Evers, V.; Wielinga, B. Assessing acceptance of assistive social agent technology by older adults: The almere model. Int. J. Soc. Robot. 2010, 2, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Joon Kim, K. User acceptance of long-term evolution (lte) services: An application of extended technology acceptance model. Program 2013, 47, 188–205. [Google Scholar] [CrossRef]
- Goetz, J.; Kiesler, S.; Powers, A. Matching robot appearance and behavior to tasks to improve human-robot cooperation. In Proceedings of the 12th IEEE international workshop on robot and human interactive communication, Millbrae, CA, USA, 31 October–2 November 2003; pp. 55–60. [Google Scholar]
- Goodrich, M.A.; Schultz, A.C. Human-robot interaction: A survey. Found. Trends Hum. Comput. Interact. 2007, 1, 203–275. [Google Scholar] [CrossRef]
- Dautenhahn, K. Socially intelligent robots: Dimensions of human–robot interaction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 679–704. [Google Scholar] [CrossRef] [Green Version]
- Kuo, I.H.; Rabindran, J.M.; Broadbent, E.; Lee, Y.I.; Kerse, N.; Stafford, R.; MacDonald, B.A. Age and gender factors in user acceptance of healthcare robots. In Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2009), Toyama, Japan, 27 September–2 October 2009; pp. 214–219. [Google Scholar]
- Flandorfer, P. Population ageing and socially assistive robots for elderly persons: The importance of sociodemographic factors for user acceptance. Int. J. Popul. Res. 2012, 2012, 829835. [Google Scholar] [CrossRef] [Green Version]
- Broadbent, E.; Stafford, R.; MacDonald, B. Acceptance of healthcare robots for the older population: Review and future directions. Int. J. Soc. Robot. 2009, 1, 319. [Google Scholar] [CrossRef]
- Casper, J.; Murphy, R.R. Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2003, 33, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.; Wiken, J.; Williams, B.; Breazeal, C. Improved human-robot team performance using chaski, a human-inspired plan execution system. In Proceedings of the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, 8–11 March 2011; pp. 29–36. [Google Scholar]
- Nikolaidis, S.; Shah, J. Human-robot cross-training: Computational formulation, modeling and evaluation of a human team training strategy. In Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction, Tokyo, Japan, 3–6 March 2013; pp. 33–40. [Google Scholar]
- Nikolaidis, S.; Ramakrishnan, R.; Gu, K.; Shah, J. Efficient model learning from joint-action demonstrations for human-robot collaborative tasks. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, New York, NY, USA, 2–5 March 2015; pp. 189–196. [Google Scholar]
- Hoffman, G.; Breazeal, C. Effects of anticipatory action on human-robot teamwork efficiency, fluency, and perception of team. In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, Arlington, WV, USA, 10–12 March 2007; pp. 1–8. [Google Scholar]
- Hoffman, G.; Breazeal, C. Cost-based anticipatory action selection for human–robot fluency. IEEE Trans. Robot. 2007, 23, 952–961. [Google Scholar] [CrossRef]
- Huttenrauch, H.; Eklundh, K.S. Fetch-and-carry with cero: Observations from a long-term user study with a service robot. In Proceedings of the 2002 11th IEEE International Workshop on Robot and Human Interactive Communication, Berlin, Germany, 27–27 September 2002; pp. 158–163. [Google Scholar]
- Chuang, C.-P.; Huang, Y.-J.; Guo-Hao, L.; Huang, Y.-C. Popbl-based education and trainning system on robotics training effectiveness. In Proceedings of the 2010 International Conference on System Science and Engineering (ICSSE), Taipei, Taiwan, 1–3 July 2010; pp. 111–114. [Google Scholar]
- Davis, F.D. A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results; Massachusetts Institute of Technology: Cambridge, MA, USA, 1985. [Google Scholar]
- Glas, D.F.; Satake, S.; Ferreri, F.; Kanda, T.; Hagita, N.; Ishiguro, H. The network robot system: Enabling social human-robot interaction in public spaces. J. Hum. Robot Interact. 2013, 1, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.; Bernhaupt, R.; Tscheligi, M.; Wollherr, D.; Kuhnlenz, K.; Buss, M. A methodological variation for acceptance evaluation of human-robot interaction in public places. In Proceedings of the 2008 17th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2008), Munich, Germany, 1–3 August 2008; pp. 713–718. [Google Scholar]
- Jensen, B.; Tomatis, N.; Mayor, L.; Drygajlo, A.; Siegwart, R. Robots meet humans: Interaction in public spaces. ITIE 2005, 52, 1530–1546. [Google Scholar] [CrossRef]
- Lasota, P.A.; Rossano, G.F.; Shah, J.A. Toward safe close-proximity human-robot interaction with standard industrial robots. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan, 18–22 August 2014. [Google Scholar]
- Dragan, A.D.; Lee, K.C.; Srinivasa, S.S. Legibility and predictability of robot motion. In Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction, Tokyo, Japan, 3–6 March 2013; pp. 301–308. [Google Scholar]
- Haddadin, S.; Albu-Schäffer, A.; Hirzinger, G. Safety evaluation of physical human-robot interaction via crash-testing. In Robotics: Science and Systems; MIT Press: Cambridge, MA, USA, 2007; pp. 217–224. [Google Scholar]
- Haddadin, S.; Albu-Schaffer, A.; Hirzinger, G. The role of the robot mass and velocity in physical human-robot interaction-part i: Non-constrained blunt impacts. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 9–23 May 2008; pp. 1331–1338. [Google Scholar]
- Edsinger, A.; Kemp, C.C. Human-robot interaction for cooperative manipulation: Handing objects to one another. In Proceedings of the 2007 16th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2007), Jeju Island, Korea, 26–29 August 2007; pp. 1167–1172. [Google Scholar]
- Mainprice, J.; Berenson, D. Human-robot collaborative manipulation planning using early prediction of human motion. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 299–306. [Google Scholar]
- Hoffman, G.; Breazeal, C. Achieving fluency through perceptual-symbol practice in human-robot collaboration. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, Amsterdam, The Netherlands, 12–15 March 2008; pp. 1–8. [Google Scholar]
- Forlizzi, J.; DiSalvo, C.; Gemperle, F. Assistive robotics and an ecology of elders living independently in their homes. Hum. Comput. Interact. 2004, 19, 25–59. [Google Scholar]
- Dautenhahn, K.; Woods, S.; Kaouri, C.; Walters, M.L.; Koay, K.L.; Werry, I. What is a robot companion-friend, assistant or butler? In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, AB, Canada, 2–6 August 2005; pp. 1192–1197. [Google Scholar]
- Nejat, G.; Sun, Y.; Nies, M. Assistive robots in health care settings. Home Health Care Manag. Pract. 2009, 21, 177–187. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Fassert, C.; Rigaud, A.-S. Designing robots for the elderly: Appearance issue and beyond. Arch. Gerontol. Geriatr. 2012, 54, 121–126. [Google Scholar] [CrossRef]
- Nagasaka, K.; Kuroki, Y.; Suzuki, S.Y.; Itoh, Y.; Yamaguchi, J.I. Integrated motion control for walking, jumping and running on a small bipedal entertainment robot. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), New Orleans, LA, USA, 26 April–1 May 2004; pp. 3189–3194. [Google Scholar]
- Li, D.; Rau, P.P.; Li, Y. A cross-cultural study: Effect of robot appearance and task. Int. J. Soc. Robot. 2010, 2, 175–186. [Google Scholar] [CrossRef]
- Salichs, M.A.; Barber, R.; Khamis, A.M.; Malfaz, M.; Gorostiza, J.F.; Pacheco, R.; Rivas, R.; Corrales, A.; Delgado, E.; Garcia, D. Maggie: A robotic platform for human-robot social interaction. In Proceedings of the 2006 IEEE Conference on Robotics, Automation and Mechatronics, Luoyang, China, 25–28 June 2006; pp. 1–7. [Google Scholar]
Approach | Category | Human-Robot Interface | Cost | Features |
---|---|---|---|---|
Kinesthetic-Based Teaching | Physical touch | Robot links and force sensors | Low |
|
Joystick-Based Teaching | Physical touch | Joystick | Low |
|
Immersive Teleoperation Scenarios Teaching | Physical touch | Robot force sensors and end effector | Low |
|
Wearable Sensor-Based Teaching | Physical touch | Force-sensing glove and VR glove | High |
|
Natural Language-Based Teaching | Non-physical touch | Natural language | Low |
|
Vision-Based Teaching | Non-physical touch | Vision sensors/systems | High |
|
Approach | Category | Algorithm | Features |
---|---|---|---|
Kinesthetic-Based Learning | Low-level learning | Task space control |
|
One-Shot Learning | Low-level learning | Pairwise mapping |
|
Multi Shot Learning | Low-level learning | Iterative kinesthetic motion refinement |
|
Vision-Based Learning | High-level learning | Symbolic encoding, Structural support vector machine |
|
Reinforcement Learning-Based Approach | High-level learning | Reinforcement learning algorithm |
|
Inverse Reinforcement Learning-Based Approach | High-level learning | Inverse reinforcement learning algorithm |
|
Skill Trees Construction-Based Approach | High-level learning | Skill trees algorithm |
|
Syntactics-Based Approach | High-level learning | Probabilistic activity grammars |
|
Semantic Networks-Based Learning | High-level learning | Semantic hierarchy algorithm |
|
Neural Models-Based Learning | High-level learning | Mirror neuron model |
|
Procedural Memory-Based Learning | High-level learning | Adaptive resonance model |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, Y.; Li, R.; Jia, Y. Learning and Comfort in Human–Robot Interaction: A Review. Appl. Sci. 2019, 9, 5152. https://doi.org/10.3390/app9235152
Wang W, Chen Y, Li R, Jia Y. Learning and Comfort in Human–Robot Interaction: A Review. Applied Sciences. 2019; 9(23):5152. https://doi.org/10.3390/app9235152
Chicago/Turabian StyleWang, Weitian, Yi Chen, Rui Li, and Yunyi Jia. 2019. "Learning and Comfort in Human–Robot Interaction: A Review" Applied Sciences 9, no. 23: 5152. https://doi.org/10.3390/app9235152
APA StyleWang, W., Chen, Y., Li, R., & Jia, Y. (2019). Learning and Comfort in Human–Robot Interaction: A Review. Applied Sciences, 9(23), 5152. https://doi.org/10.3390/app9235152