Influence of Polymorphisms of DNA Repair and GST Genes on Genotoxic Damage and Mutagen Sensitivity in Workers Occupationally Exposed to Very Low Doses of Ionizing Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. DNA Damage Biomarkers
2.3. Analyses of Chromosome Aberrations
2.4. Analysis of Micronuclei
2.5. Comet Assay
2.6. Genetic Polymorphisms
- Gene XRCC3: Determining the polymorphism Thr241Met, localized on exon 7, using the restriction enzyme NlaIII [12];
- Gene XPD: Determining the polymorphism Lys751Gln, localized on exon 23, using PstI as restriction enzyme [4];
- Gene BLMH: Determining the nucleotide substitution (A1450G), using MunI as restriction enzyme.
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Atomic Energy Agency. Cytogenetic Analysis for Radiation Dose Assessment: A Manual; Technical Reports Series No. 405; IAEA: Vienna, Austria, 2001; p. 13. [Google Scholar]
- IARC. Radiation Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 2012; Volume 100D, p. 103. [Google Scholar]
- Gourabi, H.; Mozdarani, H. A cytokinesis-blocked micronucleus study of the radioadaptive response of lymphocytes of individuals occupationally exposed to chronic doses of radiation. Mutagenesis 1998, 13, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Angelini, S.; Kumar, R.; Carbone, F.; Maffei, F.; Forti, G.C.; Violante, F.S.; Lodi, V.; Curti, S.; Hemminki, K.; Hrelia, P. Micronuclei in humans induced by exposure to low level of ionizing radiation: Influence of polymorphisms in DNA repair genes. Mutat. Res. 2005, 15, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Milić, M.; Rozgaj, R.; Kašuba, V.; Jazbec, A.M.; Starčević, B.; Lyzbicki, B.; Ravegnini, G.; Zenesini, C.; Musti, M.; Hrelia, P.; et al. Polymorphisms in DNA repair genes: Link with biomarkers of the CBMN cytome assay in hospital workers chronically exposed to low doses of ionising radiation. Arh. Hig. Rada Toksikol. 2015, 66, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Maffei, F.; Angelini, S.; Forti, G.C.; Violante, F.S.; Lodi, V.; Mattioli, S.; Hrelia, P. Spectrum of chromosomal aberrations in peripheral lymphocytes of hospital workers occupationally exposed to low doses of ionizing radiation. Mutat. Res. 2004, 22, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Güerci, A.M.; Grillo, C.A.; Dulout, F.N.; Seoane, A.I. Assessment of genotoxic damage in lymphocytes of hospital workers exposed to ionizing radiation in Argentina. Arch. Environ. Occup. Health 2006, 61, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, N.; Garaj-Vrhovac, V. Assessment of DNA damage in nuclear medicine personnel—Comparative study with the alkaline comet assay and the chromosome aberration test. Int. J. Hyg. Environ. Health 2005, 208, 179–191. [Google Scholar] [CrossRef]
- Kruszewski, M.; Wojewódzka, M.; Iwanenko, T.; Collins, A.R.; Szumiel, I. Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation: II. Base damage. Mutat. Res. 1998, 7, 37–57. [Google Scholar] [CrossRef]
- Maluf, S.W.; Passos, D.F.; Bacelar, A.; Speit, G.; Erdtmann, B. Assessment of DNA damage in lymphocytes of workers exposed to X-radiation using the micronucleus test and the comet assay. Environ. Mol. Mutagen. 2001, 38, 311–315. [Google Scholar] [CrossRef]
- Wojewódzka, M.; Kruszewski, M.; Iwaneñko, T.; Collins, A.R.; Szumiel, I. Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation: I. Strand breakage. Mutat. Res. 1998, 7, 21–35. [Google Scholar] [CrossRef]
- Andreassi, M.G.; Foffa, I.; Manfredi, S.; Botto, N.; Cioppa, A.; Picano, E. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat. Res. 2009, 18, 57–63. [Google Scholar] [CrossRef]
- Norppa, H. Genetic susceptibility, biomarker responses, and cancer. Mutat. Res. 2003, 544, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Marcon, F.; Andreoli, C.; Rossi, S.; Verdina, A.; Galati, R.; Crebelli, R. Assessment of individual sensitivity to ionizing radiation and DNA repair efficiency in a healthy population. Mutat. Res. 2003, 10, 1–8. [Google Scholar] [CrossRef]
- Sakly, A.; Gaspar, J.F.; Kerkeni, E.; Silva, S.; Teixeira, J.P.; Chaari, N.; Ben Cheikh, H. Genotoxic damage in hospital workers exposed to ionizing radiation and metabolic gene polymorphisms. J. Toxicol. Environ. Health A 2012, 75, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Barquinero, J.F.; Barrios, L.; Caballín, M.R.; Miró, R.; Ribas, M.; Subias, A.; Egozcue, J. Occupational exposure to radiation induces an adaptive response in human lymphocytes. Int. J. Radiat. Biol. 1995, 67, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Bolzán, A.D.; Bianchi, M.S.; Giménez, E.M.; Flaqué, M.C.; Ciancio, V.R. Analysis of spontaneous and bleomycin-induced chromosome damage in peripheral lymphocytes of long-haul aircrew members from Argentina. Mutat. Res. 2008, 1, 64–79. [Google Scholar] [CrossRef]
- Benkhaled, L.; Xunclà, M.; Caballín, M.R.; Barrios, L.; Barquinero, J.F. Induction of complete and incomplete chromosome aberrations by bleomycin in human lymphocytes. Mutat. Res. 2008, 1, 134–141. [Google Scholar] [CrossRef]
- Tuimala, J.; Szekely, G.; Gundy, S.; Hirvonen, A.; Norppa, H. Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: Role in mutagen sensitivity. Carcinogenesis 2002, 23, 1003–1008. [Google Scholar] [CrossRef]
- Angelini, S.; Kumar, R.; Carbone, F.; Bermejo, J.L.; Maffei, F.; Cantelli-Forti, G.; Hemminki, K.; Hrelia, P. Inherited susceptibility to bleomycin-induced micronuclei: Correlating polymorphisms in GSTT1, GSTM1 and DNA repair genes with mutagen sensitivity. Mutat. Res. 2008, 1, 90–97. [Google Scholar] [CrossRef]
- Wang, Y.; Spitz, M.R.; Zhu, Y.; Dong, Q.; Shete, S.; Wu, X. From genotype to phenotype: Correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair 2003, 12, 901–908. [Google Scholar] [CrossRef]
- Hsu, T.C.; Johnston, D.A.; Cherry, L.M.; Ramkissoon, D.; Schantz, S.P.; Jessup, J.M.; Winn, R.J.; Shirley, L.; Furlong, C. Sensitivity to genotoxic effects of bleomycin in humans: Possible relationship to environmental carcinogenesis. Int. J. Cancer 1989, 43, 403–409. [Google Scholar] [CrossRef]
- The National Foundation. An International System for Human Cytogenetic Nomenclature; Karger: Stockholm, Sweden, 1978; Volume XIV, pp. 51–76. [Google Scholar]
- Bolzán, A.D.; Bianchi, M.S. DNA and chromosome damage induced by bleomycin in mammalian cells: An update. Mutat. Res. 2018, 775, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; Morley, A.A. Measurement of micronuclei in lymphocytes. Mutat. Res. 1985, 147, 29–36. [Google Scholar] [CrossRef]
- Maffei, F.; Fimognari, C.; Castelli, E.; Stefanini, G.F.; Forti, G.C.; Hrelia, P. Increased cytogenetic damage detected by FISH analysis on micronuclei in peripheral lymphocytes from alcoholics. Mutagenesis 2000, 15, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef]
- Fracasso, M.E.; Doria, D.; Franceschetti, P.; Perbellini, L.; Romeo, L. DNA damage and repair capacity by comet assay in lymphocytes of white-collar active smokers and passive smokers (non- and ex-smokers) at workplace. Toxicol. Lett. 2006, 1, 131–141. [Google Scholar] [CrossRef]
- Collins, A.R.; El Yamani, N.; Lorenzo, Y.; Shaposhnikov, S.; Brunborg, G.; Azqueta, A. Controlling variation in the comet assay. Front. Genet. 2014, 20, 359. [Google Scholar] [CrossRef]
- Sanyal, S.; Festa, F.; Sakano, S.; Zhang, Z.; Steineck, G.; Norming, U.; Wijkström, H.; Larsson, P.; Kumar, R.; Hemminki, K. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 2004, 25, 729–734. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Zakeri, F.; Hirobe, T.; Akbari Noghabi, K. Biological effects of low-dose ionizing radiation exposure on interventional cardiologists. Occup. Med. 2010, 60, 464–469. [Google Scholar] [CrossRef]
- Bryant, P.E.; Finnegan, C.E.; Swaffield, L.; Mozdarani, H. G2 chromatid breaks in murine SCID cells. Mutagenesis 1998, 13, 481–485. [Google Scholar] [CrossRef]
- Ropolo, M.; Balia, C.; Roggieri, P.; Lodi, V.; Nucci, M.C.; Violante, F.S.; Silingardi, P.; Colacci, A.; Bolognesi, C. The micronucleus assay as a biological dosimeter in hospital workers exposed to low doses of ionizing radiation. Mutat. Res. 2012, 30, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Touil, N.; Aka, P.V.; Buchet, J.P.; Thierens, H.; Kirsch-Volders, M. Assessment of genotoxic effects related to chronic low level exposure to ionizing radiation using biomarkers for DNA damage and repair. Mutagenesis 2002, 17, 223–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauchinger, M. Quantification of low-level radiation exposure by conventional chromosome aberration analysis. Mutat. Res. 1995, 339, 177–189. [Google Scholar] [CrossRef]
- Sari-Minodier, I.; Orsière, T.; Bellon, L.; Pompili, J.; Sapin, C.; Botta, A. Cytogenetic monitoring of industrial radiographers using the micronucleus assay. Mutat. Res. 2002, 26, 37–46. [Google Scholar] [CrossRef]
- Buckton, K.E.; Brown, W.M.; Smith, P.G. Lymphocyte survival in men treated with x-rays for ankylosing spondylitis. Nature 1967, 29, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Garaj-Vrhovac, V.; Kopjar, N. The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation. Mutagenesis 2003, 18, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Gerić, M.; Popić, J.; Gajski, G.; Garaj-Vrhovac, V. Cytogenetic status of interventional radiology unit workers occupationally exposed to low-dose ionising radiation: A pilot study. Mutat. Res. 2019, 843, 46–51. [Google Scholar] [CrossRef]
- Gaetani, S.; Monaco, F.; Bracci, M.; Ciarapica, V.; Impollonia, G.; Valentino, M.; Tomasetti, M.; Santarelli, L.; Amati, M. DNA damage response in workers exposed to low-dose ionising radiation. Occup. Environ. Med. 2018, 75, 724–729. [Google Scholar] [CrossRef]
- Shakeri, M.; Zakeri, F.; Changizi, V.; Rajabpour, M.R.; Farshidpour, M.R. Cytogenetic effects of radiation and genetic polymorphisms of the XRCC1 and XRCC3 repair genes in industrial radiographers. Radiat. Environ. Biophys. 2019, 58, 247–255. [Google Scholar] [CrossRef]
- Cho, Y.H.; Kim, Y.J.; An, Y.S.; Woo, H.D.; Choi, S.Y.; Kang, C.M.; Chung, H.W. Micronucleus-centromere assay and DNA repair gene polymorphism in lymphocytes of industrial radiographers. Mutat. Res. 2009, 680, 17–24. [Google Scholar] [CrossRef]
- Dias, F.L.; Antunes, L.M.; Rezende, P.A.; Carvalho, F.E.; Silva, C.M.; Matheus, J.M.; Oliveira, J.V., Jr.; Lopes, G.P.; Pereira, G.A.; Balarin, M.A. Cytogenetic analysis in lymphocytes from workers occupationally exposed to low levels of ionizing radiation. Environ. Toxicol. Pharmacol. 2007, 23, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Neri, M.; Lando, C.; Ceppi, M.; Lin, Y.P.; Chang, W.P.; Holland, N.; Kirsch-Volders, M.; Zeiger, E.; Fenech, M. HUMN collaborative group. Effect of smoking habit on the frequency of micronuclei in human lynphocytes: result from the Human MicroNucleus project. Mutat. Res. 2003, 543, 155–166. [Google Scholar] [CrossRef]
- Fenech, M.; Holland, N.; Zeiger, E.; Chang, W.P.; Burgaz, S.; Thomas, P.; Bolognesi, C.; Knasmueller, S.; Kirsch-Volders, M.; Bonassi, S. The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future. Mutagenesis 2011, 26, 239–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, P.; Knudsen, L.E.; Loft, S.; Wallin, H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol. Biomarkers. Prev. 2000, 9, 1005–1015. [Google Scholar]
Gene | Exon | Primer F | Primer R | Annealing Temperature |
---|---|---|---|---|
XRCC1 | 6 | TGTACCTGTCACTCCCCATGG | CACTCCTATCTATGGGACACAG | 58 |
XRCC1 | 9 | TGGGGCCTGGATTGCTGGGTCTG | CAGCACCACTACCACACCCTGAAGG | 62 |
XRCC1 | 10 | AGTAAGTCTCCGTGGCTCTGG | TCTCCCTTGGTCTCCAACCT | 58 |
XRCC3 | 7 | GGTCGAGTGACAGTCCAAAC | TGCAACGGCTGAGGGTCTT | 62 |
XPD | 23 | CCCCTCTCCCTTTCCTCTGTT | GCTGCCTTCTCCTGCGTTA | 61 |
GSTT1 | 5 | TTCCTTACTGGTCCTCACATCTC | TCACCGGATCATGGCCAGCA | 58 |
GSTM1 | 6 | GAACTCCCTGAAAAGCTAAAG | GGTTGGGCTCAAATATACGGTGG | 58 |
BLXH | 12 | GCTGTGTTAGAGCAGGAACCCAATT | CCTGGATCTGTCCTTTGCAGCTCG | 58 |
General Characteristics and Lifestyle Habits | EXPOSED WORKERS | CONTROLS | ||||||
---|---|---|---|---|---|---|---|---|
N. | Mean ± SD | Median | Range | N. | Mean ± SD | Median | Range | |
Age | 43 | 48.0 ± 10.6 | 44.0 | 35.0-75.0 | 43 | 47.0 ± 10.4 | 46.0 | 32.0–68.0 |
Work at the job (years) | 43 | 22.0 ± 11.0 | 18.0 | 6.0–53.0 | - | |||
BMI | 43 | 24.9 ± 3.0 | 25.1 | 18.9–34.2 | 43 | 25.6 ± 4.6 | 25.6 | 17.6–40.6 |
Sex | ||||||||
- Male | 32 | 74.4% | 27 | 62.8% | ||||
- Female | 11 | 25.6% | 16 | 37.2% | ||||
Residence | ||||||||
- Urban | 38 | 88.4% | 41 | 95.3% | ||||
- Rural | 5 | 11.6% | 2 | 4.7% | ||||
Smoking habit | ||||||||
- Non smoker | 20 | 46.5% | 23 | 53.5% | ||||
- Smoker | 12 | 27.9% | 12 | 27.9% | ||||
- Ex smoker | 11 | 25.6% | 8 | 18.6% | ||||
- N. cigarettes/day | 12 | 11.2 ± 5.8 | 10.0 | 5.0–20.0 | 12 | 16.8 ± 10.0 | 14.5 | 3.0–40.0 |
- Packs/year | 23 | 15.7 ± 10.0 | 12.0 | 5.0–44.0 | 20 | 15.6 ± 18.0 | 8.4 | 1.0–76.0 |
Weekly alcohol consumption | ||||||||
- Teetotal/occasional drinker | 23 | 53.0% | 18 | 41.9% | ||||
- <70 g/week | 6 | 14.0% | 10 | 23.3% | ||||
- 70–200 g/week | 11 | 26.0% | 11 | 25.6% | ||||
- >200 g/week | 3 | 7.0% | 4 | 9.3% |
Exposed Workers | Effective Whole Body Dose in the Last Year (mSv) a | Cumulative Effective Whole Body Dose over the Entire Working Life (mSv) b | ||||
---|---|---|---|---|---|---|
N. | Median | Range | N. | Median | Range | |
Industrial Radiographers | 7 | 0.80 | <0.01–1.93 | 7 | 20.34 | 5.82–36.53 |
Hospital radiology workers | 20 | 0.24 | <0.01–1.57 | 20 | 1.07 | 0.20–38.26 |
Hospital surgery workers | 12 | 1.07 | 0.03–2.46 | 12 | 24.24 | 0.49–54.43 |
Other hospital workers | 4 | 0.18 | <0.01–0.67 | 4 | 7.08 | 0.20–15.63 |
Total | 43 | 0.27 | <0.01–2.46 | 43 | 5.31 | 0.20–54.43 |
Enzymes | Genes | Polymorphisms | Genotype | EXPOSED WORKERS | CONTRO S | ||
---|---|---|---|---|---|---|---|
N. | % | N. | % | ||||
DNA repair enzymes | XRCC1 | Arg194Trp | Arg/Arg | 33 | 82.5 | 36 | 90.0 |
Arg/Trp | 6 | 15.0 | 4 | 10.0 | |||
Trp/Trp | 1 | 2.5 | 0 | 0.0 | |||
Arg280Hisa | Arg/Arg | 39 | 97.5 | 30 | 75.0 | ||
Arg/His | 1 | 2.5 | 9 | 22.5 | |||
His/His | 0 | 0.0 | 1 | 2.5 | |||
Arg399Gln | Arg/Arg | 18 | 45.0 | 22 | 55.0 | ||
Arg/Gln | 14 | 35.0 | 12 | 30.0 | |||
Gln/Gln | 8 | 20.0 | 6 | 15.0 | |||
XRCC3 | Thr241Met | Thr/Thr | 14 | 35.0 | 11 | 27.5 | |
Thr/Met | 19 | 47.5 | 22 | 55.0 | |||
Met/Met | 7 | 17.5 | 7 | 17.5 | |||
XPD | Lys751Gln | Lys/Lys | 13 | 32.5 | 11 | 27.5 | |
Lys/Gln | 13 | 32.5 | 20 | 50.0 | |||
Gln/Gln | 14 | 35.0 | 9 | 22.5 | |||
Detoxification enzymes | BLHX | A1450G | A/A | 21 | 52.5 | 16 | 40.0 |
A/G | 17 | 42.5 | 23 | 57.5 | |||
G/G | 2 | 5.0 | 1 | 2.5 | |||
GSTT1 | Deletion | Non null | 36 | 90.0 | 32 | 80.0 | |
Null | 4 | 10.0 | 8 | 20.0 | |||
GSTM1 | Deletion | Non null | 26 | 66.6 | 26 | 66.6 | |
Null | 13 | 33.4 | 13 | 33.4 |
DNA Damage Markers | EXPOSED WORKERS | CONTROLS | ||||||
---|---|---|---|---|---|---|---|---|
N. | Mean ± SD | Median | Range | N. | Mean ± SD | Median | Range | |
Chromosome aberrations frequency | ||||||||
Spontaneous | ||||||||
- Total (%)a | 41 | 2.8 ± 1.7 | 2.0 | 0–6 | 41 | 2.2 ± 1.8 | 1.0 | 0–7 |
- Chromatid breaks (%) | 41 | 2.1 ± 1.1 | 2.0 | 0–6 | 41 | 1.9 ± 1.5 | 1.0 | 0–6 |
- Chromosome breaks (%)b | 41 | 0.8 ± 1.1 | 0.0 | 0–4 | 41 | 0.3 ± 0.6 | 0.0 | 0–2 |
BLM-induced | ||||||||
- Chromatid breaks (%) | 40 | 47.8 ± 17.6 | 44.5 | 12–90 | 40 | 45.8 ± 16.0 | 47.5 | 20–80 |
- Metaphases with chromatid breaks (%) | 40 | 20.1 ± 5.2 | 21.5 | 8–32 | 40 | 19.8 ± 5.4 | 20.5 | 8–31 |
- Chromatid breaks per cell | 40 | 0.96 ± 0.35 | 0.89 | 0.24-1.80 | 40 | 0.92 ± 0.32 | 0.95 | 0.40-1.60 |
Micronuclei (MN) frequency | ||||||||
- Spontaneous (MN/1000 BN) | 43 | 16.2 ± 9.4 | 14.0 | 3–45 | 42 | 14.2 ± 8.5 | 12.0 | 4–42 |
- BLM-induced (MN/1000 BN) | 41 | 22.3 ± 9.3 | 20.0 | 9–51 | 41 | 25.3 ± 9.5 | 24.0 | 7–50 |
Comet assay parameters | ||||||||
- TI (%) | 43 | 3.0 ± 1.0 | 3.4 | 0.9–4.9 | 43 | 3.2 ± 1.0 | 3.4 | 0.9–4.7 |
- TI Fpg (%) | 43 | 3.2 ± 1.1 | 3.3 | 1.1–5.0 | 43 | 3.2 ± 1.0 | 3.4 | 0.8–4.8 |
- TI Endo III (%) | 43 | 3.0 ± 0.9 | 3.1 | 1.1–4.6 | 43 | 3.1 ± 1.0 | 3.1 | 0.9–5.5 |
DNA Damage Markers | Variables | Exposed | Controls | ANOVA | ||||
---|---|---|---|---|---|---|---|---|
N | Median | Range | N | Median | Range | |||
Spontaneous chromosome breaks (%) | Male | 30 | 0.0 | 0.0-4.0 | 25 | 0.0 | 0.0–2.0 | Model: p = 0.047 Sex: NS Exposure: p = 0.013 |
Female | 11 | 1.0 | 0.0-3.0 | 16 | 0.0 | 0.0-2.0 | ||
Smokers | 12 | 0.0 | 0.0-3.0 | 12 | 0.0 | 0.0–1.0 | Model: p = 0.033 Smoke: NS Exposure: p = 0.010 | |
Non-smokers* | 29 | 1.0 | 0.0-4.0 | 29 | 0.0 | 0.0-2.0 | ||
TI (%) | Male | 32 | 3.4 | 0.9-4.3 | 27 | 2.7 | 0.9–4.6 | Model: p = 0.034 Sex: p = 0.007 Exposure: NS |
Female | 11 | 3.4 | 1.9-4.9 | 16 | 3.8 | 2.4–4.7 | ||
TI Endo III (%) | Male | 32 | 2.9 | 1.1-4.6 | 27 | 2.7 | 0.9–4.9 | Model: p = 0.014 Sex: p = 0.006 Exposure: NS |
Female | 11 | 3.3 | 2.0-4.3 | 16 | 3.6 | 2.4–5.5 |
DNA Damage Markers | Polymorphism XRCC1 | Exposed | Controls | ||||
---|---|---|---|---|---|---|---|
N | Median | Range | N | Median | Range | ||
Total chromosome aberrations (%) | wild-type | 11 | 3.0 | 1.0–6.0 | 13 | 2.0 | 1.0–7.0 |
one or more allelic variants | 29 | 2.0 | 0.0–6.0 | 26 | 1.0 | 0.0–6.0 | |
Chromatid breaks (%) | wild-type | 11 | 2.0 | 1.0–3.0 | 13 | 2.0 | 0.0–6.0 |
one or more allelic variants | 29 | 2.0 | 0.0–6.0 | 26 | 1.0 | 0.0–6.0 | |
Chromosomal breaks (%) | wild-type | 11 | 0.0 | 0.0–4.0 | 13 | 0.0 | 0.0–2.0 |
one or more allelic variants | 29 | 0.0 | 0.0–3.0 | 26 | 0.0 | 0.0–2.0 | |
Micronuclei/1000BN (%) | wild-type | 11 | 11.0 | 3.0–22.0 | 13 | 12.0 | 5.0–42.0 |
one or more allelic variants | 29 | 16.0 | 6.0–45.0 | 26 | 13.0 | 4.0–32.0 | |
TI (%) | wild-type | 11 | 3.5 | 0.9–4.3 | 13 | 3.1 | 0.9–4.0 |
one or more allelic variants | 29 | 3.3 | 0.9–4.9 | 27 | 3.4 | 1.2–4.7 | |
TI Fpg (%) | wild-type | 11 | 3.3 | 1.2–4.9 | 13 | 3.1 | 0.8–4.8 |
one or more allelic variants | 29 | 3.2 | 1.1–5.0 | 27 | 3.3 | 1.2–4.8 | |
TI Endo III (%) | wild-type | 11 | 2.8 | 1.9–4.4 | 13 | 2.8 | 1.3–4.4 |
one or more allelic variants | 29 | 3.1 | 1.1–4.6 | 27 | 3.1 | 0.9–5.5 |
Independent Variable | Spontaneous Chromosome Breaks Frequency (%) | BLM-Induced Micronuclei Frequency (MN/1000 BN) | ||||
---|---|---|---|---|---|---|
Beta | p | Beta | p | |||
Exposure groups (ref. control) | ||||||
- exposed workers | 0.28 | 0.012 | −0.23 | 0.033 | ||
Alcohol consumption (g/week) | - | ns | 0.25 | 0.001 | ||
GSTM1 (ref. wild-type) - null | - | ns | 0.22 | 0.001 | ||
Model | F | p | R2 | F | p | R2 |
6.55 | 0.012 | 0.07 | 5.85 | 0.001 | 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stufano, A.; Chiarappa, P.; Bagnulo, R.; Drago, I.; Rapisarda, V.; Ledda, C.; Vimercati, L.; De Benedictis, L.; Resta, N.; Soleo, L.; et al. Influence of Polymorphisms of DNA Repair and GST Genes on Genotoxic Damage and Mutagen Sensitivity in Workers Occupationally Exposed to Very Low Doses of Ionizing Radiation. Appl. Sci. 2019, 9, 5175. https://doi.org/10.3390/app9235175
Stufano A, Chiarappa P, Bagnulo R, Drago I, Rapisarda V, Ledda C, Vimercati L, De Benedictis L, Resta N, Soleo L, et al. Influence of Polymorphisms of DNA Repair and GST Genes on Genotoxic Damage and Mutagen Sensitivity in Workers Occupationally Exposed to Very Low Doses of Ionizing Radiation. Applied Sciences. 2019; 9(23):5175. https://doi.org/10.3390/app9235175
Chicago/Turabian StyleStufano, Angela, Patrizia Chiarappa, Rosanna Bagnulo, Ignazio Drago, Venerando Rapisarda, Caterina Ledda, Luigi Vimercati, Leonarda De Benedictis, Nicoletta Resta, Leonardo Soleo, and et al. 2019. "Influence of Polymorphisms of DNA Repair and GST Genes on Genotoxic Damage and Mutagen Sensitivity in Workers Occupationally Exposed to Very Low Doses of Ionizing Radiation" Applied Sciences 9, no. 23: 5175. https://doi.org/10.3390/app9235175
APA StyleStufano, A., Chiarappa, P., Bagnulo, R., Drago, I., Rapisarda, V., Ledda, C., Vimercati, L., De Benedictis, L., Resta, N., Soleo, L., & Lovreglio, P. (2019). Influence of Polymorphisms of DNA Repair and GST Genes on Genotoxic Damage and Mutagen Sensitivity in Workers Occupationally Exposed to Very Low Doses of Ionizing Radiation. Applied Sciences, 9(23), 5175. https://doi.org/10.3390/app9235175