Adaptive Linear Neural Network Approach for Three-Phase Four-Wire Active Power Filtering under Non-Ideal Grid and Unbalanced Load Scenarios
Abstract
:1. Introduction
2. Circuit Connection of Shunt Active Power Filter in a Three-Phase Four-Wire System and Associated Control Algorithms
3. Design Concept and Operation of Enhanced-ADALINE Algorithm
3.1. Working Principle of ADALINE Module
3.2. Working Principle of HSF Synchronizer Module
3.3. Integration of ADALINE, HSF, and Averaging Function for Generating Reference Current
4. Results and Discussion
4.1. Scenario I: Balanced and Distorted Source Voltage
4.2. Scenario II: Unbalanced and Sinusoidal Source Voltage
4.3. Scenario III: Unbalanced and Distorted Source Voltage
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fei, J.; Wang, H.; Cao, D.D. Adaptive backstepping fractional fuzzy sliding mode control of active power filter. Appl. Sci. 2019, 9, 3383. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.K.; Shah, M.C.; Tiwari, R.R.; Tekwani, P.N.N. Analysis, design and digital implementation of a shunt active power filter with different schemes of reference current generation. IET Power Electron. 2014, 7, 627–639. [Google Scholar] [CrossRef]
- Hoon, Y.; Radzi, M.A.M.; Hassan, M.K.; Mailah, N.F. Control algorithms of shunt active power filter for harmonics mitigation: A review. Energies 2017, 10, 2038. [Google Scholar] [CrossRef] [Green Version]
- Green, T.C.; Marks, J.H. Control techniques for active power filters. IEE Proc. Electr. Power Appl. 2005, 152, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Mekhilef, S. Synchronous reference frame based control technique for shunt hybrid active power filter under non-ideal voltage. In Proceedings of the Innovative Smart Grid Technologies—Asia (ISGT Asia), Kuala Lumpur, Malaysia, 20–23 May 2014; pp. 481–486. [Google Scholar]
- Hoon, Y.; Radzi, M.A.M.; Hassan, M.K.; Mailah, N.F. Three-phase three-level shunt active power filter with simplified synchronous reference frame. In Proceedings of the IEEE Industrial Electronics and Applications Conference, Kota Kinabalu, Sabah, Malaysia, 20–22 November 2016; pp. 1–6. [Google Scholar]
- Eskandarian, N.; Beromi, Y.A.; Farhangi, S. Improvement of dynamic behavior of shunt active power filter using fuzzy instantaneous power theory. J. Power Electron. 2014, 14, 1303–1313. [Google Scholar] [CrossRef] [Green Version]
- Hoon, Y.; Radzi, M.A.M.; Hassan, M.K.; Mailah, N.F. A dual-function instantaneous power theory for operation of three-level neutral-point-clamped inverter-based shunt active power filter. Energies 2018, 11, 1592. [Google Scholar] [CrossRef] [Green Version]
- Vodyakho, O.; Mi, C.C. Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems. IEEE Trans. Power Electron. 2009, 24, 1350–1363. [Google Scholar] [CrossRef]
- Sujitjorn, S.; Areerak, K.L.; Kulworawanichpong, T. The DQ axis with fourier (dqf) method for harmonic identification. IEEE Trans. Power Deliv. 2007, 22, 737–739. [Google Scholar] [CrossRef]
- Radzi, M.A.M.; Rahim, N.A. Neural network and bandless hysteresis approach to control switched capacitor active power filter for reduction of harmonics. IEEE Trans. Ind. Electron. 2009, 56, 1477–1484. [Google Scholar] [CrossRef]
- Tey, L.H.; So, P.L.; Chu, Y.C. Improvement of power quality using adaptive shunt active filter. IEEE Trans. Power Deliv. 2005, 20, 1558–1568. [Google Scholar] [CrossRef]
- Zainuri, M.A.A.M.; Radzi, M.A.M.; Soh, A.C.; Mariun, N.; Rahim, N.A.; Hajighorbani, S. Fundamental active current adaptive linear neural networks for photovoltaic shunt active power filters. Energies 2016, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Deva, T.R.; Nair, N.K. ANN based control algorithm for harmonic elimination and power factor correction using shunt active filter. Int. J. Electr. Power Eng. 2007, 1, 152–157. [Google Scholar]
- Bhattacharya, A.; Chakraborty, C. A shunt active power filter with enhanced performance using ANN-based predictive and adaptive controllers. IEEE Trans. Ind. Electron. 2011, 58, 421–428. [Google Scholar] [CrossRef]
- Rahman, N.F.A.; Radzi, M.A.M.; Soh, A.C.; Mariun, N.; Rahim, N.A. Dual function of unified adaptive linear neurons based fundamental component extraction algorithm for shunt active power filter operation. Int. Rev. Electr. Eng. 2015, 10, 544–552. [Google Scholar]
- Zainuri, M.A.A.M.; Radzi, M.A.M.; Soh, A.C.; Mariun, N.; Rahim, N.A. Simplified adaptive linear neuron harmonics extraction algorithm for dynamic performance of shunt active power filter. Int. Rev. Model. Simul. 2016, 9, 144–154. [Google Scholar]
- Djazia, K.; Krim, F.; Chaoui, A.; Sarra, M. Active power filtering using the ZDPC method under unbalanced and distorted grid voltage conditions. Energies 2015, 8, 1584–1605. [Google Scholar] [CrossRef]
- Hoon, Y.; Radzi, M.A.M.; Hassan, M.K.; Mailah, N.F. A self-tuning filter-based adaptive linear neuron approach for operation of three-level inverter-based shunt active power filters under non-ideal source voltage conditions. Energies 2017, 10, 667. [Google Scholar] [CrossRef] [Green Version]
- Dinh, N.D.; Tuyen, N.D.; Fujita, G.; Funabashi, T. Adaptive notch filter solution under unbalanced and/or distorted point of common coupling voltage for three-phase four-wire shunt active power filter with sinusoidal utility current strategy. IET Gener. Transm. Distrib. 2015, 9, 1580–1596. [Google Scholar] [CrossRef]
- Abdulsalam, M.; Poure, P.; Karimi, S.; Saadate, S. New digital reference current generation for shunt active power filter under distorted voltage conditions. Electr. Power Syst. Res. 2009, 79, 759–765. [Google Scholar] [CrossRef]
- Hoon, Y.; Radzi, M.A.M. PLL-less three-phase four-wire sapf with STF-dq0 technique for harmonics mitigation under distorted supply voltage and unbalanced load conditions. Energies 2018, 11, 2143. [Google Scholar] [CrossRef] [Green Version]
- Kale, M.; Ozdemir, E. A new hysteresis band current control technique for a shunt active filter. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 654–665. [Google Scholar] [CrossRef]
- Mikkili, S.; Panda, A.K. Instantaneous active and reactive power and current strategies for current harmonics cancellation in 3-ph 4-wire SHAF with both PI and fuzzy controllers. Energy Power Eng. 2011, 3, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Escobar, G.; Valdez, A.A.; Torres-Olguin, R.E.; Martinez-Montejano, M.F. A model-based controller for a three-phase four-wire shunt active filter with compensation of the neutral line current. IEEE Trans. Power Electron. 2007, 22, 2261–2270. [Google Scholar] [CrossRef]
- Ucar, M.; Ozdemir, E. Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition. Electr. Power Syst. Res. 2008, 78, 58–73. [Google Scholar] [CrossRef]
- Ucar, M.; Ozdemir, S.; Ozdemir, E. A unified series-parallel active filter system for nonperiodic disturbances. Turk. J. Electr. Eng. Comput. Sci. 2011, 19, 575–596. [Google Scholar]
- Kale, M.; Ozdemir, E. An adaptive hysteresis band current controller for shunt active power filter. Electr. Power Syst. Res. 2005, 73, 113–119. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers (IEEE). IEEE recommended practice and requirement for harmonic control in electric power systems. In IEEE Std 519–2014 (Revision of IEEE Std 519–1992); IEEE: Piscatawy, NJ, USA, 2014; pp. 1–29. [Google Scholar]
Load Configuration | Details | ||
---|---|---|---|
Load A: Three single-phase loads with a common neutral connected in parallel with a three-phase load (refer Figure 5a) | Phase a | Uncontrolled single-phase rectifier feeding: | 80 Ω resistor and 1500 μF capacitor in parallel |
Phase b | 20 Ω resistor and 50 mH inductor in series | ||
Phase c | 40 Ω resistor and 1100 μF capacitor in parallel | ||
Phase abc | Uncontrolled three-phase rectifier feeding: | 30 Ω resistor and 80 mH inductor in series | |
Load B: Three single-phase loads with a common neutral | Phase a | Uncontrolled single-phase rectifier feeding: | 20 Ω resistor and 50 mH inductor in series |
Phase b | 80 Ω resistor and 1500 μF capacitor in parallel | ||
Phase c | 40 Ω resistor and 80 mH inductor in series |
Performance Parameter | Load A | Load B | ||||
---|---|---|---|---|---|---|
Phase a | Phase b | Phase c | Phase a | Phase b | Phase c | |
Before installing SAPF | ||||||
THD (%) | 34.46 | 18.60 | 45.46 | 35.29 | 123.90 | 33.65 |
Phase difference (°) | 13.90 | 13.10 | 12.20 | 10.40 | 10.10 | 9.00 |
PF | 0.917 | 0.957 | 0.889 | 0.927 | 0.618 | 0.936 |
After installing SAPF (controlled by enhanced-ADALINE algorithm) | ||||||
THD (%) | 1.29 | 1.01 | 1.49 | 1.72 | 2.59 | 2.12 |
Phase difference (°) | 0.30 | 0.30 | 0.50 | 0.40 | 0.20 | 0.90 |
PF | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
After installing SAPF (controlled by STF-dq0 algorithm) [22] | ||||||
THD (%) | 1.66 | 1.50 | 2.01 | 1.90 | 3.41 | 2.55 |
Phase difference (°) | 0.40 | 0.30 | 0.60 | 0.50 | 0.30 | 1.10 |
PF | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
Performance Parameter | Load A | Load B | ||||
---|---|---|---|---|---|---|
Phase a | Phase b | Phase c | Phase a | Phase b | Phase c | |
Before installing SAPF | ||||||
THD (%) | 33.36 | 15.77 | 45.29 | 25.99 | 118.27 | 23.46 |
Phase difference (°) | 9.20 | 11.20 | 5.60 | 15.60 | 9.80 | 13.80 |
PF | 0.936 | 0.968 | 0.906 | 0.932 | 0.636 | 0.945 |
After installing SAPF (controlled by enhanced-ADALINE algorithm) | ||||||
THD (%) | 0.88 | 0.98 | 1.38 | 2.19 | 2.63 | 2.31 |
Phase difference (°) | 0.10 | 0.60 | 0.50 | 1.20 | 0.40 | 0.80 |
PF | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
After installing SAPF (controlled by STF-dq0 algorithm) [22] | ||||||
THD (%) | 1.19 | 1.49 | 1.85 | 1.94 | 2.83 | 2.14 |
Phase difference (°) | 0.10 | 0.80 | 0.70 | 1.40 | 0.40 | 0.80 |
PF | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
Performance Parameter | Load A | Load B | ||||
---|---|---|---|---|---|---|
Phase a | Phase b | Phase c | Phase a | Phase b | Phase c | |
Before installing SAPF | ||||||
THD (%) | 27.74 | 18.56 | 53.32 | 33.79 | 129.01 | 27.13 |
Phase difference (°) | 9.80 | 13.50 | 5.80 | 11.20 | 10.10 | 11.90 |
PF | 0.949 | 0.956 | 0.877 | 0.929 | 0.603 | 0.944 |
After installing SAPF (controlled by enhanced-ADALINE algorithm) | ||||||
THD (%) | 1.45 | 0.98 | 1.87 | 1.73 | 2.13 | 1.53 |
Phase difference (°) | 0.10 | 0.60 | 0.40 | 1.00 | 0.30 | 0.80 |
PF | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
After installing SAPF (controlled by STF-dq0 algorithm) [22] | ||||||
THD (%) | 1.91 | 1.66 | 2.34 | 2.20 | 2.92 | 2.05 |
Phase difference (°) | 0.10 | 0.80 | 0.60 | 1.10 | 0.40 | 0.90 |
PF | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoon, Y.; Mohd Radzi, M.A.; Al-Ogaili, A.S. Adaptive Linear Neural Network Approach for Three-Phase Four-Wire Active Power Filtering under Non-Ideal Grid and Unbalanced Load Scenarios. Appl. Sci. 2019, 9, 5304. https://doi.org/10.3390/app9245304
Hoon Y, Mohd Radzi MA, Al-Ogaili AS. Adaptive Linear Neural Network Approach for Three-Phase Four-Wire Active Power Filtering under Non-Ideal Grid and Unbalanced Load Scenarios. Applied Sciences. 2019; 9(24):5304. https://doi.org/10.3390/app9245304
Chicago/Turabian StyleHoon, Yap, Mohd Amran Mohd Radzi, and Ali Saadon Al-Ogaili. 2019. "Adaptive Linear Neural Network Approach for Three-Phase Four-Wire Active Power Filtering under Non-Ideal Grid and Unbalanced Load Scenarios" Applied Sciences 9, no. 24: 5304. https://doi.org/10.3390/app9245304
APA StyleHoon, Y., Mohd Radzi, M. A., & Al-Ogaili, A. S. (2019). Adaptive Linear Neural Network Approach for Three-Phase Four-Wire Active Power Filtering under Non-Ideal Grid and Unbalanced Load Scenarios. Applied Sciences, 9(24), 5304. https://doi.org/10.3390/app9245304