A Three-Class Classification of Cognitive Workload Based on EEG Spectral Data
Abstract
:1. Introduction
2. Materials and Methods
3. Data Processing
- SVM with cubic kernel,
- decision tree,
- k nearest neighbours (kNN),
- random forest of 100 boosted decision trees.
4. Results
4.1. Statistical Analysis
4.2. Classification Results
- 1—ECFS;
- 2—“relieff”;
- 3—mutinffs
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Gevins, A.; Smith, M.E.; McEvoy, L.; Yu, D. High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb. Cortex 1997, 7, 374–385. [Google Scholar] [CrossRef] [Green Version]
- Binet, A.; Henri, V. La Fatigue Intellectuelle; Librairie C. Reinwald, Schleicher Frères: Paris, France, 1898; Volume 1. [Google Scholar]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef]
- Kruger, J.; Doherty, S. Measuring cognitive load in the presence of educational video: Towards a multimodal methodology. Australas. J. Educ. Technol. 2016, 32, 19–31. [Google Scholar] [CrossRef]
- Hancock, P.A.; Chignell, M.H. Mental workload dynamics in adaptive interface design. IEEE Trans. Syst. Man. Cybern. 1988, 18, 647–658. [Google Scholar] [CrossRef]
- O’Donnell, R.D.; Eggemeier, F.T. Workload assessment methodology. In Handbook of Perception and Human Performance, 2: Cognitive Processes and Performance; Boff, K.R., Kaufman, L., Thomas, J.P., Eds.; Sage: Los Angeles, CA, USA, 1986. [Google Scholar]
- Hart, S.G. NASA-Task Load Index (NASA-TLX); 20 years later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Wobrock, D.; Frey, J.; Graeff, D.; de la Rivière, J.B.; Castet, J.; Lotte, F. Continuous mental effort evaluation during 3D object manipulation tasks based on brain and physiological signals. In Human-Computer Interaction—INTERACT 2015; Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9296, pp. 472–487. [Google Scholar]
- Matthews, G.; Reinerman-Jones, L.E.; Barber, D.J.; Abich, J. IV The psychometrics of mental workload: Multiple measures are sensitive but divergent. Hum. Factors. 2015, 57, 125–143. [Google Scholar] [CrossRef]
- Ren, P.; Barreto, A.; Huang, J.; Gao, Y.; Ortega, F.R.; Adjouadi, M. Offline and on-line stress detection through processing of the pupil diameter signal. Ann. Biomed. Eng. 2014, 42, 162–176. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, J. Measurement of cognitive load in HCI systems using EEG power spectrum: An experimental study. Procedia Computer Science 2016, 84, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.M.; Hogervorst, M.A.; Van Erp, J.B.; Heffelaar, T.; Zimmerman, P.H.; Oostenveld, R. Estimating workload using EEG spectral power and ERPs in the n-back task. J. Neural Eng. 2012, 9, 045008. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Andreassi, J.L. Psychophysiology: Human Behavior and Physiological Response; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1995. [Google Scholar]
- Holm, A.; Lukander, K.; Korpela, J.; Sallinen, M.; Müller, K.M.I. Estimating brain load from the EEG. Sci. World J. 2009, 9, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Putze, F.; Jarvis, J.-P.; Schultz, T. Multimodal recognition of cognitive workload for multitasking in the car. In Proceedings of the 2010 20th Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3748–3751. [Google Scholar]
- Gentili, R.J.; Jaquess, K.J.; Shuggi, I.M.; Shaw, E.P.; Oh, H.; Lo, L.C.; Hatfieldm, B.D. Combined assessment of attentional reserve and cognitive-motor effort under various levels of challenge with a dry EEG system. Psychophysiology 2018, 55, e13059. [Google Scholar] [CrossRef]
- Shaw, E.P.; Rietschel, J.C.; Hendershot, B.D.; Pruziner, A.L.; Miller, M.W.; Hatfield, B.D.; Gentili, R.J. Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking. Biol. Psychol. 2018, 134, 39–51. [Google Scholar] [CrossRef]
- Zammouri, A.; Abdelaziz, A.M.; Yassine, M. Brain-computer interface for workload estimation: Assessment of mental efforts in learning processes. Expert Syst. Appl. 2018, 112, 138–147. [Google Scholar] [CrossRef]
- Jaquess, K.J.; Lo, L.C.; Oh, H.; Lu, C.; Ginsberg, A.; Tan, Y.Y.; Gentili, R.J. Changes in mental workload and motor performance throughout multiple practice sessions under various levels of task difficulty. Neuroscience 2018, 393, 305–318. [Google Scholar] [CrossRef]
- Röy, R.N.; Charbonnier, S.; Campagne, A.; Bonnet, S. Efficient mental work- load estimation using task-independent EEG features. J. Neural Eng. 2016, 13, 026019. [Google Scholar] [CrossRef]
- Dijksterhuis, C.; de Waard, D.; Brookhuis, K.A.; Mulder, B.L.J.M.; de Jong, R. Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns. Front. Neurosci. 2013, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Sciaraffa, N.; Lanzi, P.; Pozzi, S.; Babiloni, F. EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings. Front. Hum. Neurosci. 2018, 12, 509. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.F.; Russell, C.A. Operator functional state classification using multiple psychophysiological features in an air traffic control task. Hum. Factors J. Hum. Factors Erg. 2003, 45, 381–389. [Google Scholar] [CrossRef]
- Wilson, G.F.; Russell, C.A. Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Hum. Factors 2003, 45, 635–643. [Google Scholar] [CrossRef]
- Baldwin, C.L.; Penaranda, B.N. Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification. NeuroImage 2012, 59, 48–56. [Google Scholar] [CrossRef]
- Mahmoud, R.; Shanableh, T.; Bodala, I.P.; Thakor, N.V.; Al-Nashash, H. Novel classification system for classifying cognitive workload levels under vague visual stimulation. IEEE Sens. J. 2017, 17, 7019–7028. [Google Scholar] [CrossRef]
- Borghini, G.; Isabella, R.; Vecchiato, G.; Toppi, J.; Astolfi, L.; Caltagirone, C.; Babiloni, F. Brainshield: HREEG study of perceived pilot mental workload. Ital. J. Aerosp. Med. 2011, 5, 34–47. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zarjam, P.; Epps, J.; Chen, F.; Lovell, N.H. Estimating cognitive workload using wavelet entropy-based features during an arithmetic task. Comput. Biol. Med. 2013, 43, 2186–2195. [Google Scholar] [CrossRef]
- Grimes, D.; Tan, D.S.; Hudson, S.E.; Shenoy, P.; Rao, R.P.N. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 835–844. [Google Scholar]
- Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H. Cognitive workload modulation through degraded visual stimuli: A single-trial EEG study. J. Neural Eng. 2015, 12, 046020. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hope, R.M.; Wang, Z.; Ji, Q.; Gray, W.D. Cross-subject workload classification with a hierarchical Bayes model. NeuroImage 2012, 59, 64–69. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Wang, Q.; Hua, C. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males. Neuropsychologia 2019, 129, 200–211. [Google Scholar] [CrossRef]
- Nuamah, J.K.; Seong, Y. Support vector machine (SVM) classification of cognitive tasks based on electroencephalography (EEG) engagement index. Brain-Comput. Interfaces 2018, 5, 1–12. [Google Scholar] [CrossRef]
- Sharma, G.; Gomes, A. Estimation of workload using EEG data and classification using linear classifiers. Int. J. Sci. Eng. Res. 2015, 6, 198–203. [Google Scholar]
- Walter, C.; Wolter, P.; Rosenstiel, W.; Bogdan, M.; Spüler, M. Towards cross-subject workload prediction. In Proceedings of the 6th International Brain-Computer Interface Conference 2014; Müller-Putz, G., Bauernfeind, G., Brunner, C., Steyrl, D., Wriessnegger, S., Scherer, R., Eds.; Graz University of Technology Publishing House: Graz, Austria, 2014. [Google Scholar]
- Chen, L.L.; Zhao, Y.; Ye, P.F.; Zhang, J.; Zou, J.Z. Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Syst. Appl. 2017, 85, 279–291. [Google Scholar] [CrossRef]
- Wilson, G.F.; Russell, C.A.; Monnin, J.W.; Estepp, J.R.; Christensen, J.C. How does day-to-day variability in psychophysiological data affect classifier accuracy? Proc. Human Factors Ergon. Soc. Annu. Meet. 2010, 54, 264–268. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Kodagoda, S.; Lal, S.; Dissanayake, G. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 2010, 58, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Magnusdottir, E.H.; Johannsdottir, K.R.; Bean, C.; Olafsson, B.; Gudnason, J. Cognitive workload classification using cardiovascular measures and dynamic features. In Proceedings of the 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Debrecen, Hungary, 11–14 September 2017; pp. 351–356. [Google Scholar]
- Shen, K.Q.; Ong, C.J.; Li, X.P.; Hui, Z.; Wilder-Smith, E.P. A feature selection method for multilevel mental fatigue EEG classification. IEEE Trans. Biomed. Eng. 2007, 54, 1231–1237. [Google Scholar] [CrossRef]
- Wang, Q.; Sourina, O. Real-time mental arithmetic task recognition from EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 225–232. [Google Scholar] [CrossRef]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 186–197. [Google Scholar] [CrossRef]
- Laine, T.I.; Bauer, K.W.; Lanning, J.W.; Russell, C.A.; Wilson, G.F. Selection of input features across subjects for classifying crewmember workload using artificial neural networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2002, 32, 691–704. [Google Scholar] [CrossRef]
- Spüler, M.; Walter, C.; Rosenstiel, W.; Gerjets, P.; Moeller, K.; Klein, E. EEG-based prediction of cognitive workload induced by arithmetic: A step towards online adaptation in numerical learning. ZDM 2016, 48, 267–278. [Google Scholar] [CrossRef]
- Atasoy, H.; Yildirim, E. Classification of verbal and quantitative mental tasks using phase locking values between EEG signals. Int. J. Signal. Process. Image Process. Pattern Recognit. 2016, 9, 383–390. [Google Scholar] [CrossRef]
- Shen, K.Q.; Li, X.P.; Ong, C.J.; Shao, S.Y.; Wilder-Smith, E.P. EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate. Clin. Neurophysiol. 2008, 119, 1524–1533. [Google Scholar] [CrossRef]
- Plechawska-Wójcik, M.; Borys, M.; Tokovarov, M.; Kaczorowska, M.; Wesołowska, K.; Wawrzyk, M. Classifying cognitive workload based on brain waves signal in the arithmetic tasks’ study. In Proceedings of the 2018 11th International Conference on Human System Interaction (HSI), Gdansk, Poland, 4–6 July 2018; pp. 277–283. [Google Scholar]
- Kutlu, Y.; Yayık, A.; Yildirim, E.; Yildirim, S. LU triangularization extreme learning machine in EEG cognitive task classification. Neural Comput. Appl. 2019, 31, 1117–1126. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Sun, Y.; Kwok, K.; Laskaris, N.A.; Thakor, N.; Bezerianos, A. Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions. Ann. Biomed. Eng. 2015, 43, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Plechawska-Wójcik, M.; Wawrzyk, M.; Wesołowska, K.; Kaczorowska, M.; Tokovarov, M.; Dmytruk, R.; Borys, M. EEG spectral analysis of human cognitive workload study. Studia Informatica 2017, 38, 17–30. [Google Scholar]
- Le, A.S.; Aoki, H.; Murase, F.; Ishida, K. A novel method for classifying driver cognitive distraction under naturalistic conditions with information from near-infrared spectroscopy. Front. Hum. Neurosci. 2018, 12, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.; Oh, H.; Park, M. Identification of driver cognitive workload using support vector machines with driving performance, physiology and eye movement in a driving simulator. Int. J. Precis. Eng. Manuf. 2013, 14, 1321–1327. [Google Scholar] [CrossRef]
- Zarjam, P.; Epps, J.; Lovell, N.H. Beyond subjective self-rating: EEG signal classification of cognitive workload. IEEE Trans. Auton. Ment. Dev. 2015, 7, 301–310. [Google Scholar] [CrossRef]
- Jusas, V.; Samuvel, S.G. Classification of motor imagery using combination of feature extraction and reduction methods for brain-computer interface. Inf. Technol. Control. 2019, 48, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Borys, M.; Tokovarov, M.; Wawrzyk, M.; Wesołowska, K.; Plechawska-Wójcik, M.; Dmytruk, R.; Kaczorowska, M. An analysis of eye-tracking and electroencephalography data for cognitive load measurement during arithmetic tasks. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017; pp. 287–292. [Google Scholar]
- Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.-M.; Robbins, K.A. The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 2015, 9, 16. [Google Scholar] [CrossRef]
- Winkler, I.; Debener, S.; Muller, K.-R.; Tangermann, M. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 2015, 4101–4105. [Google Scholar]
- Gabard-Durnam, L.J.; Mendez Leal, A.S.; Wilkinson, C.L.; Levin, A.R. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized processing software for developmental and high-artifact data. Front. Neurosci. 2018, 12, 97. [Google Scholar] [CrossRef]
- Roffo, G.; Melzi, S. Features selection via eigenvector centrality. In Proceedings of the International Workshop on New Frontiers in Mining Complex Patterns (NFMCP 2016), Riva del Garda, Italy, 19 September 2016; pp. 1–12. [Google Scholar]
- Winkler, I.; Haufe, S.; Tangermann, M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 2011, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uktveris, T.; Jusas, V. Application of convolutional neural networks to four-class motor imagery classification problem. Inf. Technol. Control 2017, 46, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, J. Iterative RELIEF for feature weighting. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 913–920. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency max-relevance and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Gu, Q.; Li, Z.; Han, J. Generalized fisher score for feature selection. arXiv 2012, arXiv:1202.3725. [Google Scholar]
- Elkin, C.; Devabhaktuni, V. Comparative analysis of machine learning techniques in assessing cognitive workload. In Advances in Neuroergonomics and Cognitive Engineering; Ayaz, H., Ed.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019; Volume 953, pp. 185–195. [Google Scholar]
Paper | Workload Class Number | Subject Number | Classifier | Metric | Metric Value | Approach |
---|---|---|---|---|---|---|
[45] | 3 | 8 | Artificial Neutral Network | accuracy | 0.74 | si |
2 | 0.87 | |||||
[33] | 3 | 8 | Artificial Neutral Network | accuracy | 0.83 | si |
[37] | cognitive workload level was defined as real number from the range [0.6; 7.2] | 10 | Linear Regression | correlation coefficient between predicted and actual difficulty level | 0.84 | si |
[46] | 6 | 10 | Linear Regression | correlation coefficient between predicted and actual difficulty level | 0.82 | si |
[34] | 2 | 16 | SVM | accuracy | 0.94 | sd |
[38] | 2 | 13 | SVM, ELM | accuracy | 0.99 | sd |
0.89 | si | |||||
[40] | 2 | 31 | LDA, LIBLINEAR, kNN, LIBSVM | accuracy | 0.95 | sd |
[35] | 2 | 6 | SVM | accuracy | 0.93 | sd |
[41] | 3 | 96 | SVM | mistrust rate | 0.29 | sd |
[36] | 2 | 28 | SVM, k-Means, kNN | accuracy | 0.92; 0.86; 0.58 | sd |
[53] | 3 | 26 | Decision tree, discriminant analysis, logistic regression, SVM, kNN, ensemble classifier | accuracy | 0.84–0.89 | sd |
0.81–0.95 | si | |||||
[54] | 2 | 30 | SVM | accuracy | 0.58–0.89 | si |
[48] | 5 | 10 | SVM | accuracy | 0.91 | sd |
[42] | 5 | 12 | Random forest | accuracy | 0.87 | sd |
[50] | 2 | 18 | ELM | accuracy | 0.93 | sd |
0.91 | si | |||||
[47] | 2 | 18 | kNN, decision tree ANOVA, CFT | accuracy | 0.92 | sd |
[43] | 2 | 10 | SVM | accuracy | 0.97 | sd |
[44] | kNN | accuracy | 0.8 | sd | ||
[55] | 2 | 12 | MLP | accuracy | 0.99 | si |
4 | 0.88 | |||||
[51] | 5 | 16 | LDA, kNN | accuracy | 0.96 | sd |
[33] | 3 | 8 | hierarchical Bayes model, neural net, naive Bayes | accuracy | 0.8 | si |
[56] | 4 | 9 | SVM, LDA | accuracy | 0.56 | sd |
Feature | Correlation Coefficient | p-Value |
---|---|---|
Cz beta1 | 0.35 | <0.001 |
Cz beta2 | 0.32 | <0.001 |
Fz beta1 | 0.27 | <0.001 |
C4 beta2 | 0.26 | <0.001 |
P4 beta2 | 0.25 | <0.001 |
F4 beta2 | 0.24 | <0.001 |
F3 beta1 | 0.24 | <0.001 |
C3 beta1 | 0.24 | <0.001 |
O1 beta1 | 0.24 | <0.001 |
F3 alpha | 0.23 | <0.001 |
Feature | Correlation Coefficient | p-Value |
---|---|---|
T6-A2_alpha | 0.26 | <0.001 |
O2-A2_beta1 | 0.25 | <0.001 |
T6-A2_theta | 0.22 | <0.001 |
T6-A2_beta1 | 0.16 | <0.001 |
C3-A1_delta | 0.16 | <0.001 |
T6-A2_delta | 0.14 | <0.001 |
Pz-A1_theta | 0.14 | <0.001 |
O2-A2_alpha | 0.13 | <0.001 |
Cz-A2_alpha | 0.13 | <0.001 |
P3-A1_theta | 0.12 | <0.001 |
F3-A1_beta2 | 0.12 | <0.001 |
Classifier | Highest Mean Accuracy (%) | Std (%) | Feature Number | FS Method, Which Ensured Best Result |
---|---|---|---|---|
SVM | 82.2 | 4.0 | 82 | 2 |
Decision tree (DT) | 71.1 | 4.8 | 51 | 1 |
kNN | 90.5 | 2.6 | 51 | 1 |
Random forest | 86.3 | 3.5 | 29 | 2 |
Classifier | Highest Accuracy (%) | Std (%) | Feature Number | FS Method |
---|---|---|---|---|
SVM | 82.9 | 0.9 | 81 | 3 |
Decision tree (DT) | 70.4 | 1.7 | 51 | 1 |
kNN | 91.5 | 0.7 | 52 | 2 |
Random forest | 84.6 | 1.1 | 62 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plechawska-Wójcik, M.; Tokovarov, M.; Kaczorowska, M.; Zapała, D. A Three-Class Classification of Cognitive Workload Based on EEG Spectral Data. Appl. Sci. 2019, 9, 5340. https://doi.org/10.3390/app9245340
Plechawska-Wójcik M, Tokovarov M, Kaczorowska M, Zapała D. A Three-Class Classification of Cognitive Workload Based on EEG Spectral Data. Applied Sciences. 2019; 9(24):5340. https://doi.org/10.3390/app9245340
Chicago/Turabian StylePlechawska-Wójcik, Małgorzata, Mikhail Tokovarov, Monika Kaczorowska, and Dariusz Zapała. 2019. "A Three-Class Classification of Cognitive Workload Based on EEG Spectral Data" Applied Sciences 9, no. 24: 5340. https://doi.org/10.3390/app9245340
APA StylePlechawska-Wójcik, M., Tokovarov, M., Kaczorowska, M., & Zapała, D. (2019). A Three-Class Classification of Cognitive Workload Based on EEG Spectral Data. Applied Sciences, 9(24), 5340. https://doi.org/10.3390/app9245340