Effects of Coriandrum sativum L. in Association with Physical Exercise in Alloxan-Induced Type 1 Diabetes Mellitus in Rats
Abstract
:Featured Application
Abstract
1. Introduction
2. Material and Methods
2.1. Animals and Ethical Approach
2.2. Induction of Diabetes
2.3. Preparation of the Aqueous Extract of Coriander
2.4. Experimental Procedures
2.5. Biodistribution of Radiopharmaceutical Na99mTcO4
2.6. Blood Biochemical Analysis
2.7. Body Mass Analysis
2.8. Food Intake Analysis
2.9. Stool Consistency Analysis
2.10. Statistical Analysis
3. Results
3.1. Effect of Coriander and/or WBV on Biodistribution of Sodium Pertechnetate (Na99mTcO4)
3.2. Effect of Coriander and/or WBV on a General Biochemical Analysis
3.3. Effect of Coriander and/or WBV on the Enzymatic Activities
3.4. Effect of Coriander and/or WBV on Body Mass
3.5. Effect of Coriander and/or WBV on Food Intake
3.6. Effect of Coriander and/or WBV on Stool Consistency
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zimmet, P.Z.; Magliano, D.J.; Herman, W.H.; Shaw, J.E. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol. 2014, 2, 56–64. [Google Scholar] [CrossRef]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuomi, T.; Santoro, N.; Caprio, S.; Cai, M.; Weng, J.; Groop, L. The many faces of diabetes: A disease with increasing heterogeneity. Lancet 2014, 383, 1084–1094. [Google Scholar] [CrossRef]
- Meier, C.; Schwartz, A.V.; Egger, A.; Lecka-Czernik, B. Effect of diabetes drugs on the skeleton. Bone 2015, 82, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Patial, V.; Soni, S.; Sharma, S.; Pratap, K.; Kumar, D.; Padwad, Y. Picrorhiza kurroa enhances β-cell mass proliferation and insulin secretion in streptozotocin evoked β-cell damage in rats. Front. Pharmacol. 2017, 8, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aissaoui, A.; Zizi, S.; Israili, Z.H.; Lyoussi, B. Hypoglycemic and hypolipidemic 441 effects of Coriandrum sativum L. in Meriones shawi rats. J. Ethnopharmacol. 2011, 442, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Laribi, B.; Koukz, K.; M’Hamdi, M.; Bettaieb, T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015, 103, 9–26. [Google Scholar] [CrossRef]
- Sreelatha, S.; Inbavalli, R. Antioxidant, Antihyperglycemic, and Antihyperlipidemic Effects of Coriandrum sativum Leaf and Stem in Alloxan-Induced Diabetic Rats. J. Food Sci. 2012, 77, 119–123. [Google Scholar] [CrossRef]
- Aligita, W.; Susilawati, E.; Septiani, H.; Atsil, R. Antidiabetic Activity of Coriander (Coriandrum Sativum L.) Leaves’ Ethanolic Extract. Int. J. Pharm. Phytopharmacol. Res. 2018, 8, 59–63. [Google Scholar]
- Lenzen, S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francesconi, C.; Lackinger, C.; Weitgasser, R.; Haber, P.; Niebauer, J. Physical activity and exercise training in the prevention and therapy of type 2 diabetes mellitus. Wien. Klin. Wochenschr. 2016, 128, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.J. Vibration exercise: The potential benefits. Int. J. Sports Med. 2010, 32, 75–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giombini, A.; Menotti, F.; Laudani, L.; Piccinini, A.; Fagnani, F.; Di Cagno, A.; Pigozzi, F. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males. Biol. Sport 2015, 32, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.H.; Karaca, T.; Al Suleimani, Y.; Al Za’abi, M.; Al Kalbani, J.; Ashique, M.; Nemmar, A. The effect of swimming exercise on adenine-induced kidney disease in rats, and the influence of curcumin or lisinopril thereon. PLoS ONE 2017, 12, e0176316. [Google Scholar] [CrossRef]
- Alkhatib, A.; Atcheson, R. Yerba Maté (Ilex paraguariensis) Metabolic, Satiety, and Mood State Effects at Rest and during Prolonged Exercise. Nutrients 2017, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Sharif, K.; Watad, A.; Bragazzi, N.L.; Lichtbroun, M.; Amital, H.; Shoenfeld, Y. Physical activity and autoimmune diseases: Get moving and manage the disease. Autoimmun. Rev. 2018, 17, 53–72. [Google Scholar] [CrossRef]
- Kessler, N.J.; Hong, J. Whole body vibration therapy for painful diabetic peripheral neuropathy: A pilot study. J. Bodyw. Mov. Ther. 2013, 17, 518–522. [Google Scholar] [CrossRef]
- Jing, D.; Yan, Z.; Cai, J.; Tong, S.; Li, X.; Guo, Z.; Luo, E. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2017, 106, 11–21. [Google Scholar] [CrossRef]
- Weinheimer-Haus, E.M.; Judex, S.; Ennis, W.J.; Koh, T.J. Low-intensity vibration improves angiogenesis and wound healing in diabetic mice. PLoS ONE 2014, 9, e91355. [Google Scholar] [CrossRef]
- Pawlak, M.; Kaczmarek, D.; Nowak, A.; Krutki, P. Low-volume whole-body vibration lasting 3 or 6 months does not affect biomarkers in blood serum of rats. Acta Physiol. Hung. 2013, 100, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Keijser, J.N.; van Heuvelen, M.J.G.; Nyakas, C.; Tóth, K.; Schoemaker, R.G.; Zeinstra, E.; van der Zee, E.A. Whole body vibration improves attention and motor performance in mice depending on the duration of the whole-body vibration session. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaisberg, M.; Pereira, M.O.; Souza, D.E.; Bernardo-Filho, M.; Santos-Filho, S.D.; Fonseca, A.S.; Brito, L.C. Does acute swimming exercise alter the bioavailability of the radiopharmaceutical technetium-99m methylenediphosphonate (99mTc-MDP) in Wistar rats? Anim. Biol. 2011, 61, 403–412. [Google Scholar] [CrossRef]
- Góes, V.C.; Neves, R.H.; Arnóbio, A.; Bernardo-Filho, M.; Machado-Silva, J.R. Streptozotocin (STZ) and schistosomiasis mansoni change the biodistribution of radiopharmaceutical sodium 99mTc-pertechnetate in mice. Nucl. Med. Biol. 2016, 43, 581–586. [Google Scholar] [CrossRef]
- Frederico, E.H.F.F.; Cardoso, A.L.B.D.; Guimarães, C.A.S.; Almeida, L.P.; Neves, R.F.; Sá-Caputo, D.C.; Moreira-Marconi, E.; Dionello, C.F.; Morel, D.S.; Paineiras-Domingos, L.L.; et al. Whole body vibration exercise combined with an extract of Coriandrum sativum modify some biochemical/physiological parameters in rats. Biosci. Rep. 2017, 37, BSR20170070. [Google Scholar] [CrossRef] [Green Version]
- Emordi, J.E.; Agbaje, E.O.; Oreagba, I.A.; Iribhogbe, O.I. Antidiabetic and hypolipidemic activities of hydroethanolic root extract of Uvaria chamae in streptozotocin induced diabetic albino rats. BMC Complement. Altern. Med. 2016, 16, 468. [Google Scholar] [CrossRef] [Green Version]
- Frederico, E.H.F.F.; Carmo, F.S.; Diniz, C.L.; Dantas, M.P.; Amorim, L.F.; Santos-Filho, S.D.; Bernardo-Filho, M. Influence of an aqueous extract of Coriandrum sativum leaves on the labeling of blood constituents with technetium-99m and determination of some of its physical parameters. J. Med. Plant Res. 2012, 6, 5651–5657. [Google Scholar]
- Celik, F.; Gomez, C.; Bozkurt, M.; Kaplan, I.; Kamasak, K.; Akil, E.; Uzar, E. Neuroprotective effects of carvacrol and pomegranate against methotrexate-induced toxicity in rats. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2988–2993. [Google Scholar]
- Wellington, D.; Mikaelian, I.; Singer, L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 481–487. [Google Scholar]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Ogawa, T.; Zhang, X.; Naert, I.; Vermaelen, P.; Deroose, C.M.; Sasaki, K.; Duyck, J. The effect of whole-body vibration on peri-implant bone healing in rats. Clin. Oral Implants Res. 2011, 22, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.E.L.; Kareem, M.A.; Yahia, A.B. Influence of low grade exercise on skeletal scintigraphy using Tc-99m methylene diphosphonate. Nucl. Med. Rev. 2015, 18, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederico, E.H.F.F.; Sá-Caputo, D.C.; Moreira-Marconi, E.; Guimarães, C.A.S.; Cardoso, A.L.B.D.; Dionello, C.F.; Morel, D.S.; Sousa-Gonçalves, C.R.; Paineiras-Domingos, L.L.; Costa-Cavalcanti, R.G.; et al. Effect of mechanical vibration generated in oscillating/vibratory platform on the concentration of plasma biomarkers and on the weight in rats. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, M.O.B.; Sá-Caputo, D.C.; Moreira-Marconi, E.; Frederico, E.H.F.F.; Sousa-Gonçalves, C.R.; Bernardo, L.C.; Guimarães, C.A.S.; Bernardo-Filho, M. Effect of a short period whole body vibration with 10 Hz on blood biomarkers in Wistar rats. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Erceg, D.N.; Anderson, L.J.; Nickles, C.M.; Lane, C.J.; Weigensberg, M.J.; Schroeder, E.T. Changes in bone biomarkers, BMC, and insulin resistance following a 10-week whole body vibration exercise program in overweight Latino boys. Int. J. Med. Sci. 2015, 12, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C.; Chen, Y.M.; Huang, C.C.; Tzeng, Y.D. Dehydroepiandrosterone supplementation combined with whole-body vibration training affects testosterone level and body composition in mice. Int. J. Med. Sci. 2016, 13, 730–740. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zeng, R.; Cao, G.; Song, Z.; Zhang, Y.; Liu, C. Vibration training triggers brown adipocyte relative protein expression in rat white adipose tissue. Biomed Res. Int. 2015, 919401. [Google Scholar] [CrossRef]
- Lin, C.I.; Huang, W.C.; Chen, W.C.; Kan, N.W.; Wei, L.; Chiu, Y.S.; Huang, C.C. Effect of whole-body vibration training on body composition, exercise performance and biochemical responses in middle-aged mice. Metabolism 2015, 64, 1146–1156. [Google Scholar] [CrossRef]
- Cardoso, A.L.B.D.; Frederico, É.H.F.F.; Guimarães, C.A.S.; Almeida, L.P.; de Figueiredo Neves, R.; de Sá-Caputo, D.; Moreira-Marconi, E.; Dionello, C.F.; Morel, D.S.; Paineiras-Domingos, L.L.; et al. Chenopodium ambrosioides associated with whole body vibration exercises alters the feed intake in Wistar rats. Biosci. Rep. 2017, 37, BSR20170846. [Google Scholar] [CrossRef] [Green Version]
- Usmanghani, K.; Saeed, A.; Alam, M.T. Indusyunic Medicine: Traditional Medicine of Herbal, Animal and Mineral Origin in Pakistan; BCC and T Press, University of Karachi: Karachi, Pakistan, 2003. [Google Scholar]
- Nieto, M.D.L.L.; Wu, J.M.; Matthews, C.; Whitehead, W.E.; Markland, A.D. Factors associated with fecal incontinence in a nationally representative sample of diabetic women. Int. Urogynecol. J. 2015, 26, 1483–1488. [Google Scholar] [CrossRef]
ORGANS | CON | COR | WBV | COR + WBV | p | ε2 |
---|---|---|---|---|---|---|
Thyroid | 5.17 ± 2.19 | 5.13 ± 3.35 | 6.97 ± 0.95 | 6.85 ± 1.70 | 0.26 | 0.26 |
Stomach | 5.05 ± 1.35 | 6.86 ± 1.28 | 5.95 ± 1.26 | 5.29 ± 2.71 | 0.23 | 0.29 |
Bowel | 1.24 ± 0.32 | 3.06 ± 1.75 | 1.40 ± 0.00 | 1.42 ± 0.68 | 0.24 | 0.28 |
Kidney | 1.22 ± 0.41 | 1.13 ± 0.57 | 1.47 ± 0.15 | 1.17 ± 0.22 | 0.75 | 0.08 |
Liver | 1.40 ± 0.24 | 1.32 ± 0.41 | 1.38 ± 0.02 | 1.26 ± 0.16 | 0.55 | 0.14 |
Pancreas | 1.09 ± 0.32 | 0.90 ± 0.50 | 1.02 ± 0.04 | 0.87 ± 0.49 | 0.85 | 0.05 |
Bone | 0.30 ± 0.12 | 0.34 ± 0.15 | 0.54 ± 0.14 | 0.36 ± 0.12 | 0.14 | 0.36 |
Lung | 1.60 ± 0.78 | 1.25 ± 0.66 | 2.08 ± 0.01 | 1.29 ± 0.34 | 0.37 | 0.21 |
Heart | 0.67 ± 0.26 | 0.60 ± 0.47 | 0.91 ± 0.26 | 0.55 ± 0.14 | 0.38 | 0.21 |
Spleen | 0.72 ± 0.24 | 0.58 ± 0.30 | 0.85 ± 0.16 | 0.59 ± 0.16 | 0.33 | 0.23 |
Muscle | 0.17 ± 0.06 | 0.22 ± 0.12 | 0.30 ± 0.04 | 0.21 ± 0.05 | 0.28 | 0.25 |
Bladder | 0.65 ± 0.17 | 0.78 ± 0.25 | 1.00 ± 0.37 | 1.15 ± 0.71 | 0.44 | 0.18 |
Biomarkers | CON | COR | WBV | COR + WBV | p | ε2 |
---|---|---|---|---|---|---|
Glucose (mmol/L) | 36.1 ± 2.32 | 37.30 ± 3.88 | 39.69 ± 0.19 | 38.40 ± 2.29 | 0.32 | 0.24 |
Urea (mmol/L) | 14.71 ± 3.82 | 15.40 ± 3.57 | 20.81 ± 7.05 | 16.45 ± 5.39 | 0.56 | 0.14 |
Creatinine (µmol/L) | 31.82 ± 7.96 | 38.01 ± 8.84 | 35.36 ± 12.38 | 33.59 ± 7.07 | 0.74 | 0.08 |
Cholesterol (mmol/L) | 1.66 ± 0.39 | 1.88 ± 0.88 | 1.98 ± 0.53 | 1.60 ± 0.32 | 0.70 | 0.10 |
Triglycerides (mmol/L) | 1.74 ± 0.75 | 1.75 ± 0.85 | 1.75 ± 0.60 | 1.83 ± 1.03 | 0.99 | 0.01 |
HDL (mmol/L) | 1.49 ± 0.23 | 1.39 ± 0.18 | 1.53 ± 0.02 | 1.35 ± 0.21 | 0.52 | 0.15 |
Total Bilirubin (µmol/L) | 2.05 ± 0.51 | 1.71 ± 0.34 | 2.22 ± 0.17 | 2.05 ± 0.34 | 0.40 | 0.20 |
Direct Bilirubin (µmol/L) | 0.86 ± 0.17 | 0.86 ± 0.31 | 1.20 ± 0.51 | 0.68 ± 0.34 | 0.70 | 0.09 |
Calcium (mmol/L) | 2.50 ± 0.07 | 2.65 ± 0.23 | 2.52 ± 0.15 | 2.60 ± 0.13 | 0.50 | 0.16 |
Magnesium (mmol/L) | 1.03 ± 0.04 | 1.11 ± 0.12 | 1.07 ± 0.12 | 1.11 ± 0.08 | 0.42 | 0.19 |
Total Protein (g/L) | 0.57 ± 0.03 | 0.53 ± 0.07 | 0.57 ± 0.03 | 0.56 ± 0.05 | 0.68 | 0.10 |
Albumin (g/L) | 0.32 ± 0.02 | 0.31 ± 0.01 | 0.30 ± 0.07 | 0.32 ± 0.01 | 0.35 | 0.22 |
Week | CON | COR | WBV | COR + WBV | p | ε2 |
---|---|---|---|---|---|---|
0 | 100.0 ± 0.0 | 100.0 ± 0.0 | 100.0 ± 0.0 | 100.0 ± 0.0 | 0.98 | 0.01 |
1 | 116.1 ± 17.4 | 112.0 ± 13.0 | 117.6 ± 12.7 | 116.4 ± 12.6 | 0.85 | 0.05 |
2 | 116.4 ± 14.4 | 105.9 ± 16.8 | 102.0 ± 16.2 | 116.6 ± 9.9 | 0.37 | 0.02 |
3 | 117.2 ± 16.4 | 110.5 ± 17.8 | 108.9 ± 11.0 | 116.6 ± 11.2 | 0.72 | 0.04 |
4 | 116.7 ± 16.1 | 109.0 ± 19.6 | 103.9 ± 18.9 | 115.1 ± 07.4 | 0.74 | 0.05 |
Day | CON | COR | WBV | COR + WBV | p | ε2 |
---|---|---|---|---|---|---|
01–07 | 2.00 ± 0.00 | 2.00 ± 0.00 | 2.00 ± 0.00 | 2.00 ± 0.00 | 0.55 | 0.11 |
08–14 | 2.00 ± 0.00 | 2.00 ± 0.00 | 2.00 ± 1.00 | 2.00 ± 0.00 | 0.13 | 0.30 |
15–21 | 2.00 ± 0.00 | 2.00 ± 1.00 | 2.00 ± 0.00 | 2.00 ± 0.00 | 0.25 | 0.22 |
22–28 | 2.00 ± 0.00 | 2.00 ± 1.00 | 2.00 ± 0.00 | 2.00 ± 0.00 | 0.10 | 0.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, A.L.B.D.; Frederico, É.H.F.F.; Guimarães, C.A.S.; Moura-Fernandes, M.C.; Guedes-Aguiar, E.O.; Silva, A.L.P.d.; Reis-Silva, A.; Francisca-Santos, A.; de Souza, L.F.F.; Mendonça-Guimarães, R.; et al. Effects of Coriandrum sativum L. in Association with Physical Exercise in Alloxan-Induced Type 1 Diabetes Mellitus in Rats. Appl. Sci. 2019, 9, 5409. https://doi.org/10.3390/app9245409
Cardoso ALBD, Frederico ÉHFF, Guimarães CAS, Moura-Fernandes MC, Guedes-Aguiar EO, Silva ALPd, Reis-Silva A, Francisca-Santos A, de Souza LFF, Mendonça-Guimarães R, et al. Effects of Coriandrum sativum L. in Association with Physical Exercise in Alloxan-Induced Type 1 Diabetes Mellitus in Rats. Applied Sciences. 2019; 9(24):5409. https://doi.org/10.3390/app9245409
Chicago/Turabian StyleCardoso, André L. B. D., Éric H. F. F. Frederico, Carlos A. S. Guimarães, Marcia C. Moura-Fernandes, Eliane O. Guedes-Aguiar, Adriana L P da Silva, Aline Reis-Silva, Arlete Francisca-Santos, Luiz F. F. de Souza, Rubens Mendonça-Guimarães, and et al. 2019. "Effects of Coriandrum sativum L. in Association with Physical Exercise in Alloxan-Induced Type 1 Diabetes Mellitus in Rats" Applied Sciences 9, no. 24: 5409. https://doi.org/10.3390/app9245409
APA StyleCardoso, A. L. B. D., Frederico, É. H. F. F., Guimarães, C. A. S., Moura-Fernandes, M. C., Guedes-Aguiar, E. O., Silva, A. L. P. d., Reis-Silva, A., Francisca-Santos, A., de Souza, L. F. F., Mendonça-Guimarães, R., Eduardo-Santos, T., Eduardo-Santos, D., Paineiras-Domingos, L. L., de Sá-Caputo, D. d. C., Asad, N. R., Taiar, R., & Bernardo-Filho, M. (2019). Effects of Coriandrum sativum L. in Association with Physical Exercise in Alloxan-Induced Type 1 Diabetes Mellitus in Rats. Applied Sciences, 9(24), 5409. https://doi.org/10.3390/app9245409