A General Approach Based on Newton’s Method and Cyclic Coordinate Descent Method for Solving the Inverse Kinematics
Abstract
:Featured Application
Abstract
1. Introduction
2. Preliminaries
2.1. Kinematics Description of Robot Manipulator
2.2. Newton’s Method
2.3. The CCD Method
3. Numerical Methods for Nonlinear Kinematic Equations
3.1. Definition of Objective Function in Inverse Kinematics
3.2. Necessary Formulas for Newton’s Method
3.2.1. Determining the Gradient of Objective Function
3.2.2. Determining the Hessian Matrix of Objective Function
3.3. The ICCD Method
3.3.1. Necessary Formulas for Solving a Single Joint Variable
3.3.2. Necessary Formulas for Solving Consecutive Prismatic Joints
3.3.3. Necessary Formulas for Solving Consecutive Parallel Revolute Joints
3.3.4. ICCD Method of the Iterative Procedure
3.4. The NICCD Method for The Inverse Kinematics Problem
Algorithm 1 The improved cyclic coordinate descent (ICCD) method. |
|
3.4.1. The Scale Factor
3.4.2. The NICCD Approach of the Iterative Procedure
4. Simulation and Discussion
Algorithm 2 The Newton-improved cyclic coordinate descent (NICCD) method. |
|
4.1. Simulation I
4.2. Simulation II
4.3. Simulation III
4.4. Simulation IV
4.5. Simulation V
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NICCD | Newton-improved cyclic coordinate descent |
ICCD | improved cyclic coordinate descent |
CCD | cyclic coordinate descent |
NR | Newton–Raphson |
6R | six revolute |
PoE | product-of-exponentials |
3R | three-link planar arm |
SCARA | selective compliance assembly robot arm |
3P | Cartesian manipulator |
Appendix A
Appendix B
Appendix C
References
- Jahanpour, J.; Motallebi, M.; Porghoveh, M. A Novel Trajectory Planning Scheme for Parallel Machining Robots Enhanced with NURBS Curves. J. Intell. Robot. Syst. 2016, 82, 257–275. [Google Scholar] [CrossRef]
- Pivarciova, E.; Bozek, P.; Turygin, Y.; Zajacko, I.; Shchenyatsky, A.; Vaclav, S.; Cisar, M.; Gemela, B. Analysis of control and correction options of mobile robot trajectory by an inertial navigation system. Int. J. Adv. Robot. Syst. 2018, 15. [Google Scholar] [CrossRef]
- Hartenberg, R.S.; Denavit, J. Kinematic Synthesis of Linkages; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics Modelling, Planning and Control; Springer: London, UK, 2009. [Google Scholar]
- Pieper, L.D. Kinematics of Manipulators under Computer Control. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1968. [Google Scholar]
- Tsai, L.W.; Morgan, A.P. Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods. J. Mech. Des. 1985, 107, 189. [Google Scholar] [CrossRef]
- Primrose, E.J.F. On the input-output equation of the general 7R-mechanism. Mech. Mach. Theory 1986, 21, 509–510. [Google Scholar] [CrossRef]
- Manocha D, C.J.F. Efficient inverse kinematics for general 6R manipulators. IEEE Trans. Robot. Autom. 1994, 10, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Khatib, O. A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J. Robot. Autom. 1987, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Chiaverini, S.; Siciliano, B.; Egeland, O. Review of damped least squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans Control. Syst. Technol. 1994, 2, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zhang, J.; Liang, B.; Bing, L. Singularity analysis and avoidance for robot manipulators with non-spherical wrists. IEEE Trans. Ind. Electron. 2015, 63, 277–290. [Google Scholar] [CrossRef]
- Goldenberg, A.A.; Benhabib, B.; Fenton, R.G. A complete generalized solution to the inverse kinematics of robots. IEEE J. Robot. Autom. 1985, 1, 14–20. [Google Scholar] [CrossRef]
- Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming; Springer: Berlin, Germany, 2008. [Google Scholar]
- Kelemen, M.; Virgala, I.; Lipták, T.; Miková, L.; Filakovský, F.; Bulej, V. A novel approach for a inverse kinematics solution of a redundant manipulator. Appl. Sci. 2018, 8, 2229. [Google Scholar] [CrossRef] [Green Version]
- Zaplana, I.; Basanez, L. A novel closed-form solution for the inverse kinematics of redundant manipulators through workspace analysis. Mech. Mach. Theory 2018, 121, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.; Liao, Q.; Wei, S.; Su, H.J. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions. Mech. Mach. Theory 2010, 45, 193–199. [Google Scholar] [CrossRef]
- Menini, L.; Tornambè, A. A Lie symmetry approach for the solution of the inverse kinematics problem. Nonlinear Dyn. 2012, 69, 1965–1977. [Google Scholar] [CrossRef]
- Köker, R.; Öz, C.; Çakar, T.; Ekiz, H. A study of neural network based inverse kinematics solution for a three-joint robot. Robot. Auton. Syst. 2004, 49, 227–234. [Google Scholar] [CrossRef]
- Köker, R.; Çakar, T.; Sari, Y. A neural-network committee machine approach to the inverse kinematics problem solution of robotic manipulators. Eng. Comput. 2014, 30, 641–649. [Google Scholar] [CrossRef]
- Kalra, P.; Mahapatra, P.B.; Aggarwal, D.K. An evolutionary approach for solving the multimodal inverse kinematics problem of industrial robots. Mech. Mach. Theory 2006, 41, 1213–1229. [Google Scholar] [CrossRef]
- Tabandeh, S.; Melek, W.W.; Clark, C.M. An adaptive niching genetic algorithm approach for generating multiple solutions of serial manipulator inverse kinematics with applications to modular robots. Robotica 2010, 28, 493–507. [Google Scholar] [CrossRef]
- Rokbani, N.; Alimi, A.M. Inverse kinematics using particle swarm optimization, a statistical analysis. Procedia Eng. 2013, 64, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Koker, R. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Inf. Sci. 2013, 222, 528–543. [Google Scholar] [CrossRef]
- Köker, R.; Çakar, T. A neuro-genetic-simulated annealing approach to the inverse kinematics solution of robots: a simulation based study. Eng. Comput. 2016, 32, 1–13. [Google Scholar] [CrossRef]
- Lynch, K.; Park, F. Modern Robotics: Mechanics, Planning, and Control; Cambridge Univeristy Press: Cambridge, UK, 2017. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin, Germany, 2006. [Google Scholar]
- Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization. Oper. Res. Lett. 2017, 46, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. Data and performance profiles applying an adaptive truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex optimization. Data Brief 2018, 17, 246–255. [Google Scholar] [CrossRef] [PubMed]
i | 3R | SCARA | 3P | |||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
i | UR5 | Stanford Arm | WAM7R | |||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
SCARA | UR5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.2169 | 2.1269 | 100.0000 | 0.2391 | 3.0076 | 1.3364 | 0.0030 | −0.1817 | −2.7670 | 1.1434 | |
−2.1142 | 2.6458 | −11.9929 | 0.4863 | −1.9350 | −2.2690 | 1.2332 | −2.5521 | 0.1596 | 0.1907 | |
−1.5218 | −0.6484 | −20.0000 | 1.1567 | −1.0585 | 0.4914 | 2.2274 | 0.8946 | −0.5020 | 0.2885 |
Stanford Arm | WAM7R | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−0.1290 | 0.8754 | 100.0000 | 0.9256 | 0.2757 | 1.3889 | 0.4088 | 2.0346 | −2.3493 | −1.2559 | −3.1283 | 2.8344 | 1.6732 | |
−1.0520 | 2.2184 | −0.3619 | 2.5406 | −2.9331 | 0.2037 | −0.5576 | 2.2993 | 2.6431 | 1.8048 | −0.9740 | −2.7061 | 1.6552 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Luo, X.; Han, B.; Jia, Y.; Liang, G.; Wang, X. A General Approach Based on Newton’s Method and Cyclic Coordinate Descent Method for Solving the Inverse Kinematics. Appl. Sci. 2019, 9, 5461. https://doi.org/10.3390/app9245461
Chen Y, Luo X, Han B, Jia Y, Liang G, Wang X. A General Approach Based on Newton’s Method and Cyclic Coordinate Descent Method for Solving the Inverse Kinematics. Applied Sciences. 2019; 9(24):5461. https://doi.org/10.3390/app9245461
Chicago/Turabian StyleChen, Yuhan, Xiao Luo, Baoling Han, Yan Jia, Guanhao Liang, and Xinda Wang. 2019. "A General Approach Based on Newton’s Method and Cyclic Coordinate Descent Method for Solving the Inverse Kinematics" Applied Sciences 9, no. 24: 5461. https://doi.org/10.3390/app9245461
APA StyleChen, Y., Luo, X., Han, B., Jia, Y., Liang, G., & Wang, X. (2019). A General Approach Based on Newton’s Method and Cyclic Coordinate Descent Method for Solving the Inverse Kinematics. Applied Sciences, 9(24), 5461. https://doi.org/10.3390/app9245461