Study on the Chemical Composition, Enzyme Inhibition and Antioxidant Activity of Ziziphora taurica subsp. cleonioides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Extraction Procedure
2.4. Total Phenolic and Total Flavonoid Content
2.5. Antioxidant Activity
2.6. Enzyme Inhibition Activity
2.7. Liquid Chromatography–Electrospray Tandem Mass Spectrometry (LC–ESI–MS/MS) Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield
3.2. Total Phenolic and Flavonoid Content
3.3. Antioxidant Activity
3.4. Enzyme Inhibition Activity
3.5. LC–ESI–MS/MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cazarolli, L.H.; Zanatta, L.; Alberton, E.H.; Bonorino Figueiredo, M.S.R.; Folador, P.; Damazio, R.G.; Pizzolatti, M.G.; Barreto, S.; Fatima, R.M. Flavonoids: Prospective Drug Candidates. Med. Chem. 2008, 8, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, M.B.; Kirkan, B.; Sarikurkcu, C. Phenolic ingredients and therapeutic potential of Stachys cretica subsp. smyrnaea for the management of oxidative stress, Alzheimer’s disease, hyperglycemia, and melisma. Ind. Crops Prod. 2019, 127, 82–87. [Google Scholar] [CrossRef]
- Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets 2012, 16, 269–297. [Google Scholar] [CrossRef] [Green Version]
- Umeno, A.; Horie, M.; Murotomi, K.; Nakajima, Y.; Yoshida, Y. Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones. Molecules 2016, 21, 708. [Google Scholar] [CrossRef]
- Farzaei, F.; Morovati, M.R.; Farjadmand, F.; Farzaei, M.H. A Mechanistic Review on Medicinal Plants Used for Diabetes Mellitus in Traditional Persian Medicine. J. Evid. Based Complement. Altern. Med. 2017, 22, 944–955. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S. Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials 2012, 5, 1661–1685. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.J.; Chen, L.G.; Chang, T.L.; Ke, W.M.; Lo, Y.F.; Wang, C.C. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 2011, 124, 833–841. [Google Scholar] [CrossRef]
- Kaya, A.; Dirmenci, T. Nutlet morphology of Turkish Ziziphora L. (Lamiaceae). Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2012, 146, 560–563. [Google Scholar]
- Sonboli, A.; Mirjalili, M.H.; Hadian, J.; Ebrahimi, S.N.; Yousefzadi, M. Antibacterial activity and composition of the essential oil of Ziziphora clinopodioides subsp bungeana (Juz.) Rech. f. from Iran. Z. Naturforsch. C 2006, 61, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Alp, S.; Ercisli, S.; Dogan, H.; Temim, E.; Leto, A.; Zia-Ul-Haq, M.; Hadziabulic, A.; Aladag, H. Chemical composition and antioxidant activity Ziziphora clinopodioides ecotypes from Turkey. Rom. Biotechnol. Lett. 2016, 21, 11298–11303. [Google Scholar]
- Sezik, E.; Tümen, G.; Başer, K.H.C. Ziziphora tenuior L., a new source of pulegone. Flavour Fragr. J. 1991, 6, 101–103. [Google Scholar] [CrossRef]
- Behravan, J.; Ramezani, M.; Hassanzadeh, M.K.; Eskandari, M.; Kasaian, J.; Sabeti, Z. Composition, antimycotic and antibacterial activity of Ziziphora clinopodioides Lam. essential oil from Iran. J. Essent. Oil Bear. Plants 2007, 10, 339–345. [Google Scholar] [CrossRef]
- Senejoux, F.; Demougeot, C.; Kerram, P.; Aisa, H.A.; Berthelot, A.; Bévalot, F.; Girard-Thernier, C. Bioassay-guided isolation of vasorelaxant compounds from Ziziphora clinopodioides Lam. (Lamiaceae). Fitoterapia 2012, 83, 377–382. [Google Scholar] [CrossRef]
- Šmejkal, K.; Malaník, M.; Zhaparkulova, K.; Sakipova, Z.; Ibragimova, L.; Ibadullaeva, G.; Žemlička, M. Kazakh Ziziphora species as sources of bioactive substances. Molecules 2016, 21, 826. [Google Scholar] [CrossRef] [Green Version]
- Senejoux, F.; Girard, C.; Kerram, P.; Aisa, H.A.; Berthelot, A.; Bevalot, F.; Demougeot, C. Mechanisms of vasorelaxation induced by Ziziphora clinopodioides Lam. (Lamiaceae) extract in rat thoracic aorta. J. Ethnopharmacol. 2010, 132, 268–273. [Google Scholar] [CrossRef]
- Zou, G.A.; Guo, D.; Zhao, H.Q.; Aisa, H.A. Bioactive constituents of Ziziphora clinopodioides. Chem. Nat. Compd. 2015, 51, 961–963. [Google Scholar] [CrossRef]
- Elgin, G.; Karabay Yavaşoǧlu, N.Ü.; Öztürk, B. Antimicrobial activity of endemic Ziziphora taurica subsp. cleonioides (Boiss) P. H. Davis essential oil. Acta Pharm. Sci. 2006, 48, 55–62. [Google Scholar]
- Meral, G.E.; Konyalioglu, S.; Ozturk, B. Essential oil composition and antioxidant activity of endemic Ziziphora taurica subsp. cleonioides. Fitoterapia 2002, 73, 716–718. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardisation d’un extrait de propolis et identification des principaux constituants. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar] [PubMed]
- Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem. Toxicol. 2013, 55, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçaǧ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 1988, 36, 1090–2097. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yang, X.W.; Huang, M.-Z.; Jin, Y.S.; Sun, L.N.; Song, Y.; Chen, H.S. Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia 2012, 83, 1169–1175. [Google Scholar] [CrossRef]
- Erdogan Orhan, I.; Senol, F.S.; Gulpinar, A.R.; Sekeroglu, N.; Kartal, M.; Sener, B. Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses. Food Chem. 2012, 130, 882–888. [Google Scholar] [CrossRef]
- Cittan, M.; Çelik, A. Development and validation of an analytical methodology based on liquid chromatography–electrospray tandem mass spectrometry for the simultaneous determination of phenolic compounds in Olive leaf extract. J. Chromatogr. Sci. 2018, 56, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.V.; Scarlett, C.J.; Bowyer, M.C.; Ngo, P.D.; Vuong, Q.V. Impact of Different Extraction Solvents on Bioactive Compounds and Antioxidant Capacity from the Root of Salacia chinensis L. J. Food Qual. 2017, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, K.R.; Veeresh, V.P.; Vipan, K.; Sudheer, M.; Priyadarsini, K.I.; Satish, R.B.S.S.; Unnikrishnan, M.K. Bioactivity-guided fractionation of Coronopus didymus: A free radical scavenging perspective. Phytomedicine 2006, 13, 591–595. [Google Scholar] [CrossRef]
- Noreen, H.; Semmar, N.; Farman, M.; McCullagh, J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017, 10, 792–801. [Google Scholar] [CrossRef]
- Dastjerdi, L.S.; Mazoji, A. Antioxidant activity and total phenols content of different solvent extracts of Ziziphora clinopodioides from three geographical locations in Iran. J. Chem. Pharm. Res. 2016, 8, 243–248. [Google Scholar]
- Dineshkumar, B.; Mitra, A.; Manjunatha, M. A comparative study of alpha amylase inhibitory activities of common anti-diabetic plants at Kharagpur 1 block. Int. J. Green Pharm. 2010, 4, 115–121. [Google Scholar]
- Tian, S.; Shi, Y.; Zhou, X.; Ge, L.; Upur, H. Total polyphenolic (flavonoids) content and antioxidant capacity of different Ziziphora clinopodioides Lam. extracts. Pharmacogn. Mag. 2011, 7, 65–68. [Google Scholar]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase. Crit. Rev. Food Sci. Nutr. 2013, 53, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Sánchez, A.; Santamaría-Román, A.; Ponce-Olivera, R.M. Efficacy of dioic acid compared with hydroquinone in the treatment of melisma. Int. J. Dermatol. 2009, 48, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.-L.; Miyakawa, T.; Hayashi, Y.; Okamoto, K.; Hu, F.; Mitani, N.; Furihata, K.; Sawano, Y.; Tanokura, M. Isolation and tyrosinase inhibitory effects of polyphenols from the leaves of Persimmon, Diospyros kaki. J. Agric. Food Chem. 2011, 59, 6011–6017. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.; Ceylan, O.; Locatelli, M.; Tartaglia, A.; Ferrone, V.; Sarikurkcu, C. Ziziphora taurica subsp. taurica: Analytical Characterization and Biological Activities. Biomolecules 2019, 9, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olennikov, D.N.; Akobirshoeva, A.A. Flavonoids and Phenylpropanoids of Nepeta glutinosa and Ziziphora pamiroalaica. Chem. Nat. Compd. 2016, 52, 909–912. [Google Scholar] [CrossRef]
- Mohammadhosseini, M. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 2017, 105, 164–192. [Google Scholar] [CrossRef]
- Naimi, M.; Vlavcheski, F.; Shamshoum, H.; Tsiani, E. Rosemary Extract as a Potential Anti-Hyperglycemic Agent: Current Evidence and Future Perspectives. Nutrients 2017, 9, 968. [Google Scholar] [CrossRef] [Green Version]
- Khalil, O.A.; Ramadan, S.K.; Danial, N.E.; Alnahdi, S.H.; Najla, O.A. Antidiabetic activity of Rosmarinus officinalis and its relationship with the antioxidant property. Afr. J. Pharm. Pharmacol. 2012, 6, 1031–1036. [Google Scholar]
- Nicasio, P.; Aguilar-Santamaría, L.; Aranda, E.; Ortiz, S.; González, M. Hypoglycemic effect and chlorogenic acid content in two Cecropia species. Phytother. Res. 2005, 19, 661–664. [Google Scholar] [CrossRef]
- Oliveira, K.B.; Palú, P.; Weffort-Santos, A.M.; Oliveira, B.H. Influence of rosmarinic acid and Salvia officinalis extracts on melanogenesis of B16F10 cells. Rev. Bras. Farmacogn. 2013, 23, 249–258. [Google Scholar] [CrossRef] [Green Version]
- De Freitas, M.M.; Fontes, P.R.; Souza, P.M.; William, F.C.; Neves Silva Guerra, E.; de Medeiros Nóbrega, Y.K.; Silveira, D.; Fonseca-Bazzo, Y.; Simeoni, L.A.; Homem-de-Mello, M.; et al. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity. PLoS ONE 2016, 11, e0163130. [Google Scholar] [CrossRef] [PubMed]
Extract | Yield (%) | Total Flavonoid Content (mg QEs/g Extract) | Total Phenolic Content (mg GAEs/g Extract) |
---|---|---|---|
Ethyl acetate | 4.29 | 11.67 ± 0.03 b | 37.45 ± 1.73 a |
Methanol | 11.26 | 14.76 ± 0.21 a | 20.40 ± 1.36 b |
Water | 21.15 | 4.27 ± 0.42c | 18.19 ± 0.17 b |
Samples | Phosphomolybdenum | Ferric reducing antioxidant power (FRAP) Reducing | Cupric ion reducing capability (CUPRAC) Reducing | 1,1-diphenyl-2-picrylhydrazyl (DPPH) Radical | 2,2-azino-bis (3-ethylbenzothiazloine-6-sulphonic acid) radical cation (ABTS) Radical | Ferrous ion Chelating |
---|---|---|---|---|---|---|
Ethyl acetate | 1.52 ± 0.02 b | 2.99 ± 0.26 c | 1.80 ± 0.03 b | 10.60 ± 0.79 c | 4.11 ± 0.09 c | 6.47 ± 0.67 c |
Methanol | 1.82 ± 0.15 bc | 1.14 ± 0.06 b | 1.97 ± 0.02 c | 4.75 ± 0.12 b | 2.66 ± 0.02 b | 1.66 ± 0.02 b |
Water | 2.71 ± 0.26 c | 1.54 ± 0.15 b | 2.49 ± 0.06 d | 4.98 ± 0.15 b | 2.61 ± 0.26 b | 1.04 ± 0.01 ab |
BHA | 0.35 ± 0.01 a | 0.25 ± 0.01 a | 0.30 ± 0.01 a | 0.32 ± 0.01 a | 0.25 ± 0.01 a | - |
EDTA | - | - | - | - | - | 0.034 ± 0.001 a |
Samples | α-Amylase Inhibition | Tyrosinase Inhibition |
---|---|---|
Ethyl acetate | 1.95 ± 0.04 b | 1.40 ± 0.06 b |
Methanol | 3.97 ± 0.08 c | 1.25 ± 0.01 b |
Water | 36.99 ± 0.13 d | 2.71 ± 0.42 c |
Acarbose | 1.21 ± 0.07 a | - |
Kojic acid | - | 0.37 ± 0.02 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarikurkcu, C.; Kakouri, E.; Sarikurkcu, R.T.; Tarantilis, P.A. Study on the Chemical Composition, Enzyme Inhibition and Antioxidant Activity of Ziziphora taurica subsp. cleonioides. Appl. Sci. 2019, 9, 5515. https://doi.org/10.3390/app9245515
Sarikurkcu C, Kakouri E, Sarikurkcu RT, Tarantilis PA. Study on the Chemical Composition, Enzyme Inhibition and Antioxidant Activity of Ziziphora taurica subsp. cleonioides. Applied Sciences. 2019; 9(24):5515. https://doi.org/10.3390/app9245515
Chicago/Turabian StyleSarikurkcu, Cengiz, Eleni Kakouri, Rifat Tayyib Sarikurkcu, and Petros A. Tarantilis. 2019. "Study on the Chemical Composition, Enzyme Inhibition and Antioxidant Activity of Ziziphora taurica subsp. cleonioides" Applied Sciences 9, no. 24: 5515. https://doi.org/10.3390/app9245515
APA StyleSarikurkcu, C., Kakouri, E., Sarikurkcu, R. T., & Tarantilis, P. A. (2019). Study on the Chemical Composition, Enzyme Inhibition and Antioxidant Activity of Ziziphora taurica subsp. cleonioides. Applied Sciences, 9(24), 5515. https://doi.org/10.3390/app9245515